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ABSTRACT

In this paper we obtain some summation theorems for truncated unilateral generalized hypergeometric series associated
with negative unit argument given by

3+1F3{Co’ (83)s1+(h3); —aps s paa FauilCys (85)s 1=Vl +(By), —v; —11,,_..
B+3FB+2[cos (33)’ i—#, l_g;l"'(hs)a —H,—G, _]lzu_g,
praFpislco, (85), 10, 1-0, 1-&;1+ (), —0, —~@, - &; = | T
pekst Fpukc[Cos (85)s 1= (B )51+ (hy), — (65 )s —Upse
and 28 FaplCos (85)s 1= (Pp)s 1+ (hg), —(05); — s »
using series iteration techniques; where V,u,6,0,0,£,0, and p, are the functions of parameters

Cos B1582s++s85sMshys... hgy. Applying Rainville's limit formula for certain infinite products, some non

terminating hypergeometric summation theorems with negative unit argument are also deduced, in terms of Gamma
functions subject to certain conditions. The results presented here are presumably new.

Keywords and Phrases: Pochhammer symbol; Gaussian ordinary hypergeometric function; Gamma function;
Rainville's limit formula; Truncated unilateral and non terminating series

2010 AMS Subject Classifications: 33-Special Functions, Primary 33C99; Secondary 33C20
1.0 INTRODUCTION

Truncated Unilateral Generalized Hypergeomé'tric Series
A
k
(a,); v I1(a), 2
Al o _
N

(bs);

=35 ceed1.1)
1)), &
=

to (N +1)terms =AF8{

where numerator and denominator parameters-are neither zero nor negative integers and A, B are non-negative

integers. When N — oo then (1.1) reduces to non-terminating generalized hypergeometric series and Pochhammer's
k-1

symbol (¢), is givenby (¢), = n(c+ )
Jj=0
Rainville's Limit Formula for Certain Infinite Products

_(n+a)(n+a))--(ntay)

it " (n+b)n+b,)(n+b,)
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then product [IU, can only converge if k = £and Za, = Zb;. When these conditions are satisfied, we can

express the infinite product in terms of Gamma functions [2,p.115(Q.No.11)]. Now limit formula for certain infinite
products can be written in the following form, if

(I+a)+(A+a,)+(A+a)++(1+a,)=A+b)+(A+b,)+(1+b,)+---+(1+D,) (1.2)

and no 4, or bs is a negative integer, then without any loss of absolute convergence, we have the following theorem
[2,p.128(Q.No.1);3,pp.6-7(1.3.8);5,pp.14-15(Th.5)].

ﬁ{(ma,xn+az)---(n+a,)}:lim{awl)&(lwz)t-»—a+a,)k} o
(n"'bl)(n"'bz)‘"(”'*'bs) Ao (1+bl)k(1+b2)t"'(l+bs)k

_ T(+b)T(1+b,)--T(1+b,)
" T(+a)T(1+a,)-T(+a,)

n=l1

. (14)

If condition (1.2) is not true, then product in (1.3) diverges.

In our analysis, the symbol S,(g,,8&,,...,2,) represents the sum of all possible combinations of the products of
parameters taken """ at a time from the set of " B" parameters {g,,2,,...,8,}-

We shall discuss the applications of summation theorems of Slater, Verma, Qureshi and Quraishi with positive unit
argument, for truncated unilateral hypergeometric series involving negative unit argument in next sections.

Since Pochhammer's symbol is associated with Gamma function and Gamma function is undefined for zero and negative
integers therefore numerator and denominator parameters are adjusted in such a way that each term of following results is
completely well defined and meaningful then without any loss of convergence, we have the following theorems.

2.0 COMPANION OF SLATER-THEOREM .
B
; Co ]_—_[(gj)
Cos (85) 3 _ J=1
3 " L= B 21
€2 Y T

U(th)

(50, (), 1), (22, ]

where

. 1+h, 2+h, &%
v B N +
w-a3), (55
) (e )
M-l M-=1 f=1 M-1
...(2.3)

R EN N

subject to the foltowing cenditions, given by
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S,(co 1+¢o, 8151+ 815, 85,14+ 85) =8, (-1, -1+~ hy,...,~ 1+ hy,hy) ...(2.4)
Syp42(€os 14€05 8151+ 8150, 85,14+ 8,) 20 ..(2.5)
when r=1,2,3,...,2B+1); £ {0,1},Be{l,2,3,...} and M €{2,3,4,...}. (2.6)
Proof of (2.1)
Consider the following series identities:
M M M-1
D ®3) =Y ®2i)+ Y DQ2i+1) 2.7
i=0 i=0 i=0
2M-1 M-l M-l
D) =D DQ2i)+ Y DQi+]) (2.8)
i=0 i=0 i=0 )
where M € {2,3,4,...}.
The finite series identities (2.7) and (2.8) can be unified in the following form
2M-¢ M-g M-l
D) =) @2+ ) DQ2i+1) . (2.9)
i=0 i=0 i=0

where £ € {0,1} and M € {2,3,4,...}.
Supposé left hand side of (2.1) is denoted by S, then -
_ A (), (81, (82, (8,), (1)’
i=0 i! (1+h1):‘ (l+h2)f (1 + hB):‘

Applying the finite series identity (2.9) in the right hand side of (2.10), we get

...(2.10)

5= 5 @)y @)ar - @)y DT AR €0) @1)r (€2) (81) CD™

i N (A+h)y U+ Ry )y (4 hy)y 1 Qi+ D A+ Ay L+ Ay) g (L4 )
.(2.11)

Now write finite power series of (2.11) in truncated hypergeometric notation, we have
c l+ey (85) 1+(85) .

. 2" 2" 9 7
5= 23+2F23+| l 1+(h8) 2+(h3) 1

2" 9 °

2 M-e

B :
cﬂn(gj) 1+c, 2+¢, 1+(gp) 2+(gy) |
a o 2 3 ] 3] 2 ’ )
B e 12280 g 2+(h3) 3+(h3) . 1 : | ..(2.12)
H( + j) 2’ 2 ] 2 3

Jj=1

M-1

In (2.12) apply Slater's theorem[1,p.18(4.10,4.11);6,pp.83-84(2.6.1.1, 2.6.1.7);7,p.233(3.1); see also 4,equations (3.5.1)-
(3.5.3)], we get the right hand side of (2.1).
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Deduction of (2.1)

Since in the right hand side of (2.1), (1.2) type condition associated with (1.3) type products in (2.2) and (2.3) are
satisfied, hence we can take the limit M — o0 in (2.1)

. col—[(g;)
3+1FBI:CO, (fﬂ)’ _1:|=TB_ BH
1+(hs) 5 [Ta+h)

J=1

AP

T, ..(2.13)

where

T, = ..(2.14)

r 2+C‘0)‘_(3+C{,)ﬁ I 2+g; I 3+gj

2 2 Ja 2 2
LB 2+h 3+h
i)

T, = = (2.15)

2r(3+co]r(4+co]l£[ 1_ 3+g,) (4+g,

2 . 453 2 2
subject to the conditions (2.4)-(2.6)
3.0 COMPANION OF VERMA-THEOREM 3

If we proceed on the same parallel lines of preceding section and apply Verma theorem [7,p.233(3.3); 1,p.19(4.12); see
also 4,equations (3.2.1)-(3.2.4)], we obtain

B
, v-De, [1(g)
Cos (g3)9l_v » _ j=1
se2Fpu -1 =T - 1, .-(3.1)
2M-¢

—kF B B
1+(hg),~v VH(]"‘hj)
j=l
subject to the following conditions, given by
S,(Cos 1+, 8151+ 8150, 85,1+ 85) =S, (=L =1+h,h,...,— 1+ hy,hy) .32

8284 (Cos 1+ey: 811+ 8100851+ 85) # Sy (-1~1 +h19hpo-°p_l+h8,b8) ...3.3)
S2B+2(coa 1+Co,81>1+8'p---,83,1+8'B) ¢0 ...(3.4)

~82842(Cos 1 +€4, 81,1+ 815, 85,1+ 85)

v= . (3.5
{stﬂ'(cos 1+ Cos & ’1 + & "’gssl + gs) "SZB+I (_1""1 "‘hphl,---,"’ l'l'h”,hs)}

where #=1,2,3,...,(2B); £ € {0,1},Be {,2,3,...} and M €{2,3,4,...}. (3.6)
and T;,T, are given by (2.2), (2.3) respectively.

Deduction of (3.1) ;
Since in the right hand side of (3.1), (1.2) type condition associated with (1.3) type products in (2.2) and (2.3) are

satisfied, hence we can take the limit M — 0 in (3.1) .
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B
v-De, [ ](g)
I N i
B+2 " B4l 1+(h8),_v ; 3

= T EN))
v[Ta+h)

Jj=1
subject to the conditions (3.2)-(3.6), where T 3 and T:, are given by (2.14) and (2.15) respectively.

4.0 COMPANION OF FIRST THEOREM OF QURESHI AND QURAISHI

If we proceed on the same parallel lines of preoediné sections and apply first theorem of authors [4,equations (3.3. -
(3.3.6)], we obtain

B
-Ns-De, [ [ ()

C‘,(g ),l"',(l,l—g; ; ji=
o M[l:(ha) e 7Y =T- = —1, (D)
B/ M g H 2M—¢ MH(I‘F;’);)
J=1
subject to the following conditions, given by '
S,(co,1+co,g,,l+g,,...,g3,l+g3)=Sr(—l,-1+h,,hl,...,—l+h3,h3) .(42)
S,5(cys 1+¢, 8151+ 815000385514 85) # Sy (L, =14 hy, by~ 1+ by By ...(4.3)
S2842(Co> l+Co,g|,l+g,,...,gﬂ,i+g3)¢0 ...(4.4)
#'= = 8354 (5 1+¢0, 81,148,154, 85,1+ 85) + Sppu CL—1+ Ay, By ooy =1+ iy 1) +/D
Z{SZB(CI]’ l+60’gl91+g1""’g3’1_+gB)_SZB(m'l’_l+h]:h19---s‘_l+h3sh3)}
(4.5)
g:—Swﬂ(cn,1+Co,gl,1+g1,...,g3,1+g3)+S13+,(—1,~1+h.,hl,...,—l+h5,h5)—\/-5
2{S,,(cy» I+Co’3131+319---583’1+gs)‘st(_l,—l+h|shp---,_l+h,g,h3)}
..(4.6)
D ={8,5,1(cos l+co,g|=l+g:s---sgs,l+33)"stu(_ls‘l+h1$h|v“s"1+hashs)}z =
_4{S2.B(c0’1+co’g]’1+gl""’gﬂ’1+gB)_SIB(-_19_1+h|sh|s"~,-'1+h33h3)}x
% {852 (Cos 1+Co,g|,1+8p-u,83;1+8‘3)} -(4.7)
where 7 =1,2,3,...,(2B-1); £ €{0,1}, B {1,2,3,...}, M = {2,3,4,...}. (4.8)

and 7,7, are given by (2.2), (2.3) respectively.

Deduction of (4.1)
When M — o in (4.1), we get

j=1
T, 4.9)
1+ (h,),— p,— : a - S
( B) H g A #{;H(l + hj)
j=1
subject to the conditions (4.2)-(4.8), thre T, and T, are given by (2.14) and (2.15) respectively.

-D(¢c-1 =
[co,(gg),l—p,l—g;_l]zr_(ﬂ Ns-De, [T(g))
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5.0 COMPANION OF SECOND THEOREM OF QURESHI AND QURAISHI

If we proceed on the same parallel lines of preceding sections and apply second theorém of authors[4,equations (3.4.1)-
(3.4.8)], we can obtain

B
(c-D@-DE-De, [ (g)
cy (g)1-0,1-0,1- ¢ ; ) L]
1 -1 =T - T ..(5.1)
B+ B+3l+(h)—o-‘“a)_§ " B 2
ah T * e owé [[(+h,)
e
subject to the fol_lowing conditions, given by
S,(Cor 14+€o, 811+ 815000, 85514 8,) =8, (-1, =1+h, ...~ 1+ hy, ) wf52)

Sapa(Cos 14+Co, 81,1+ 815n s 85,1+ 85) #Sop(“L=1+h,h,...,.~1+h,,hy) ...(5.3)

SZB+2(Cus1+coaglsl+g]s---sgasl+gg)¢0 . .(5.4)

oo ¢
223
[(S251(Cos 1+ €, 8151+ 815005 8551+ 84) = Sy (“L, =1+, By ..o 1+ By by )} (2m) +
+{855(Cos 1+€0,8151+ 81505851+ 85) = Sy (L= 1+ My, by, =1+ By 1y )} (2m)? +

+{8,,..(c,5 ]+co,g,,l+g,,...,g3,1+g3]—SZM(—I,—I+h,,h,,...,—l+h3,hﬂ)}(2m)+

{82512 (Cos 14+ €, 8151+ 85005 85,1+ 84)}] =0 ..(5.5)

~ where are the roots of the following cubic equation

when r = 1,2,3,...,(23—2); ee€{0,1},B,M € {2,3,4,...} (5.6
and T,,T, are given by (2.2), (2.3) respectively. :

Deduction of (5.1)
When M — o in (5.1), we get

i T, (5.7

ows H(l+hj)

J=1

[co, (gz)l-o,1-w,1-¢&; _1} (O'—l)(w—l)(cf—l)cu]__‘[(gj)

1+(h,), -0, -0, ¢
subject to the conditions (5.2)-(5.6), where T’; and T; are given by (2.14) and (2.15) respectively.

6.0 COMPANION OF THIRD THEOREM OF QURESHI AND QURAISHI

If we apply third theorem of authors[4,equations (3.6.1)-(3.6.4)] and proceed on the same paraliel lines of preceding
sections, we can obtain

: Co ]__I(5 "l)I-_[(g;
CO’ (83)91_(51() ' f-l
bkt Tk 1 4 () ) 1 - =T - /45 (6.1)
‘ sl —Qx) 3 M-¢ 1‘[(5}_)1’[(] +h,)
Jj=1 j=1
subject to the following conditions, given by . :
Sr(CO’ 1+C0’gl’1+gl’ ’gB’I+gB) S ( 1 1+h|:h|,---s_1+hgsh3) (62)

Sapia(Cor 14C4, 811 ¥ 81seers Bpsl +g5) ¢st-mz(_]&_]"'hlshls-'"s"'l"'hgshs) .-(6.3)
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S23+2 (Co'-' l'*'co*g]%] + gl""!gB’l +85)#0 ...(6.4)
5| 62 5;: ; e
where 7,?,° .y —2- are the roots of the following equation

[{S25-k42(Cos 14 €0, 8151+ 81538551+ 85) = Sy g CL—1+A, by, =14+ By 1)} 2m)K +
{81543 (o> 1460, 8151+ 81500, 85514 85) = Sypis (CL =1+ A, Ay oy = 14 By 1y )} 2m) < +
+oot {85(Cos 14€0, 81,1+ 81505 8501+ 85) = Sy (“L=1+ A, By, = 14 By By )} (2m)? +
{8550 (Co> 1+Cos 8151+ 81seees 8o 1+ 85) = Syp (L =1+ Ry, By s~ 1+ by, )} (2m) +
+{83512(Cos 1+ €5 8151+ 815000, 85,1+ 85)}]=0 ...(6.5)

when r=1,2,3,...,2B-K +1); e€{0,1},Be{1,2,3,...}, M €{2,3,4,...}, K<2B+1" ..(66)
and T,,T, are given by (2.2), (2.3) respectively.

Deduction of (6.1)
When M —> o0 in (6.1), we get

0 o, -1 . ]
Cor (85)1-(8) ; —1}::;"_6 [1e, )g(g,)

=
BHK+1 B+K[ - = = ' ..(6.7)
1+(h,), — (& Y
=) [T@)ITa+h)
J=1 el

subject to the conditions (6.2)-(6.6), where T} and T are given by (2.14) and (2.15) respectively.

7.0 COMPANION OF FOURTH THEOREM OF QURESHI AND QURAISHI

If we apply fourth theorem of authors[4,equations (3.1.1),(3.1.5),(3.1.6),(3.6.1)~(3.6.4)] and proceed on the same parallel
lines of preceding sections, we have

€ D{(p,- -1)(g )}

Co> (85),1- ;
2B+1F23[11:fﬂ))_(;p;), _ljl ‘whe—y Ta o ]
R e [T{(p,)1+h))}
=l
subject to the following conditions, given by
S,(Cos 14+¢4, 8151+ 81500, 85,1+ 85) =8, (=L, —1+h, by,....— 1+ By hy) .(12)
Sgi2(Cos 1+ €, 8151+ 815000y 8o 1+ 85) # Sy (L —=1+h, b,y =1+ by, hy) {73
S:mz(%:l"'cmgl,]+8‘|s---983,1+33)¢0 ...(7.4)
where %, % T —,% are the roots of the following equation

[{S8+2(CO’ 1+Cu,g|,1+g,,...,gB,l+gB)—SB+2(—1,—1+h,,h1,...,—1+h8,h3)}(2m)3 *

B Y (- 1+co,gl,1+gl_,...,gg,l+g3)—SB+3(—1,~1+h,,hl,...,—l+h3-,h5.)}(2m)3’1 +

+oo {8, (Cos 1+<:,;.,g1,l+.f_zl,...,g£,;'1+g.a)-.S’w(—I;I+h,,1f'f:,,...,«—1+hB,hB)}(2m)2 +
+4{S,5.(cps 1+¢o, 8,1+ 8150801+ 85) = Sopn (L =1+h, b= 1+ by by )Y (2m) +
+{8,5., (s 1€ 8] + Bryvens Eps 1+ 2501 =0 ..(7.5)
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when r=1,23,... (B+1); e {0,1},B e 1L2.3... . Me {2,3,4,...} .(7.6)
and 7,7, are given by (2.2), (2.3) respectively.

Deduction of (7.1) .
When M — o0 in (7.1), we get

B 3\

0 -1 i
,:COS (ga)s!_(ps) 5 i l:' =7 X I-;][{(pf )(g )} T (1.7 )
1+(h), - (pp) ﬁ{(p;)(l’fh,-)} ;

j=1
subject to the conditions (7.2)-(7.6), where T; and T, are given by (2.14) and (2.15) respectively.
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ABSTRACT

The increasing level of solid waste is now a days, a serious problem in the urban areas of the world. In general all Indian
cities face similar problems with their solid waste management. Amount and content of generated solid waste may differ
among different cities but problems related to collection, transport and disposal are about the same. A mathematical model is
presented for the best utilization of resources to minimize the cost involve in it.The rising popularity of incineration of
municipal solid waste calls for detailed mathematical modeling and understanding of the incineration process. In this paper a
municipal solid waste management system, including one SOM plant for treatment of organic material, one RDF plant for
production of refuse derive fuel, one recycling plant, one landfill, and two incinerators with energy recovery. Here first
incinerator work at low humidity and moderate temperature, while second incinerator work at very high temperature. The
objective function in the model describes total investment and maintenance costs, transportation cost. The benefits from
refuse derive fuel; energy generation, compost, and recycling are also incorporated in the objective function. The models can
be used an important tool for planners, in municipal solid waste management in urban environment.

Keywords: MSW- municipal solid waste,RDF- refuse derived fuel;SOM- stabilized organic material,
1.0 INTRODUCTION

India i still considered to be a so-called developing country and an enormous gap exists between the rich elite and the poor
masses. All local bodies lack in technical, managerial, administrative financial resources, adequate institutional arrangement
and the technical know how to managing urban solid waste. It is therefore very essential to provide proper guidance and
trainings to the personnel in the urban local bodies to make them efficient in managing the solid waste generated in their
respective areas/cities/towns.This is a hard task since it is necessary to take into account economic, technical, normative
aspects, paying particular attention to environmental problems. Municipal solid waste(MSW) management involves the
collection of waste from its sources and the transportation of waste to processing plants where it can either be converted into
1uel(RDF), electrical energy, compdst(SOM) or recycled for reuse. The unrecoverable waste can either be transported
directly from the waste source to landfills or from treatment plant to landfills. A careful planning is required in order to
execute these activities in an optimal way.

Among others the following methodologies have been proposed. Badran and EL-Haggar (1) present a mixed integer linear
programming model whose objective covers collection cost from collection stations, transportation cost from collection
stations to either composting plant to landfills. The model of Chang and Chang (2) minimized overall cost through the
solution of a nonlinear programming problem.Costi et al (3) have presented a comprehensive mixed integer non linear
programming problem, whose planning horizon in a year.One similarity between our model and that of costi et.al. (3) is that
collection cost from waste sources to collection points are not part of themodel.Fiorucci et al (4) can be derived from that of
costiet.al (3) by ignoring environmental constraintsR. Minciardi et.al. (5) presents a multiobjective approach for solid waste
management. Michael (6) present mathematical models in municipal solid waste management.The difference between our
models and. that of Michael (6) is that some of the variables in his model measure the number of replacement trucks. In our
model,we consider only the number of trucks (excluding replacement trucks) used per day. In his model he considers only
one incinerator plant.In this model we introduce a new concept of two incinerators. So the waste from the waste source
transport to first incinerator and then from first incinerator to second incinerator and then to landfill. Part of the waste from
incinerator one to landfill will also be their. Energy recovers by first and second incinerator goesto market. The aim of this
work is fo maximize the benefit from incinerator’s plant and this will minimize the total cost in objective function. These will
also minimizing the amount of waste and filling time to the sanitary landfill.
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2.0 FORMULATION OF THE MODEL

The model has been formulated as an integer linear programming problem. The aim of this work is to present the structure
and the application of a decision support system (DSS) designed to help decision makers (DMs) of a municipality in the
development integrated program for solid waste management.

A detailed representation of the model is shown in figure (1).

The variable x,y,v along the arcs gives the waste flow amounts in terms of number of trucks.The total daily waste production
enters the source where it is separated then sent to the plants. From the source metals are taken to recycling, organic material
is taken for compost (SOM)production, part of the waste with low humidity and high heating value is sent to incinerator’s for
energy generation, or sent for RDF production, or disposed of in a sanitary landfill. Recycling is considered for paper, glass,
plastic, wood, organic materials, and textiles. The fuel from RDF producing plant is sold inthe market, while the scraps are
sent to an incinerator orlandfill. The SOM joins the market while the scraps are taken to an incinerator or landfill. Scraps
irom recycling, RDF producing plant and SOM producing plant to incinerators will not be incorporated in the model. Part of
the waste with low humidity and at moderate temperature ~ sent to incinerator at J.the set of incinerator at J can produce
energy under certain conditions. They have their limitations. Therefore another set of incinerator has been introduced in this
paper so as to create very high temperature in these incinerators. Though the wastes remain at incinerator J will be
approximate 20% of the waste sent to J' but still at J’ remaining waste will be approximate 50% to be sent to landfill.
Therefore we are creating energy at J' as well.

2.1 INDICES
i=1,2,.....I: location of waste sources (collection points).
J=1,2......J:location of first.incinerators.

J'=12.:....J" location of second incinerator,
k=190, K: location of sanitary landfills.
m=12..... M: location of (RDF) plants.

h=12....... H : location of Composing (SOM ) plants.

§= L s S: location of recycling plants.
(1) [ TSNP, L: truck type.

g=12.......... G : waste type.
| 2.2 VARIABLES

Xijs Xims Xin ,Xis . Xix:-respectivelytotal number of trips made by trucks from waste source i to an incinerator at j, an RDF plant
at m, an SOM plant at h, a recycling plant at s, and a landfill at k

Xij, Xim, Xin, Xis, Xik .. respectively total number of trucks used everyday to carry waste from source i to anincinerator at j, an
RDF plant at m, an SOM plant at h, a recycling plant at s, and a landfill at k.

1Yk > Vi, Yk, Yix, Y- respectively total number of trips made by trucks from an incinerators at Jjand j’, an RDF plant at
m, an SOM plant at h, a recycling plant at s to a landfill at k.
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YiYix, Ymk, Yik, Ysk, - respectively total number of trucks used everyday from an incinerator at j and j', an RDF plant at m,
an SOM plant at h, a recycling plant at s to a landfill at k.

Zj,% Zm, %, %, %, - 0-1 variables indicating respectively , the presence of an incinerator’s at j and j' , RDF plant at m, an
SOM plant at h , a recycling plant at s and a landfill at k.

Wj ,. Wi, Wi, Wt ,W;:- amount of waste transported everyday respectively ,to an incinerator at j, an RDF plant at m, an SOM
plant at h, a recycling plant at s and a landfill at k while w; is the amount of waste transported from first incinerator at j to

~ an second incinerator at j'.

T :- total number of trucks used everyday.
Vjj i total number of trips made by tfucks from an incinerator at j to an incinerator at j'.

vjj:- numbers of trucks used to carry waste from an incinerator at j to an incinerator at j’.

Seurce (i} ’
E l E x
o xl‘M‘ xv X iy I =
ROF Plant {m) E SOM Plant (h) ] Incinerater () Recyling Plant (s} | Land Fill ¢
[ I {.—i . . .
o o g I
Vv .XJ"
y 0
incinerater i) ¢ o
J I Faxg i
‘%' ) .ymkg
"_“J Market

(Figure 1) A simple mathematical model
2.3 INPUT DATA PARAMETERS

& Am, 8, 3, 8 . expected number of trips made by trucks per day between waste source at i and an incinerator at j, an
RDF plant at m, an SOM plant at h, a recycling plant at s and a landfill at k.

bix.bjk, buk > b, bt~ expected number of trips a truck of type 1 can make respectively per day between an incinerator at j and
J's an RDF plant at m, an SOM plant at h, a recycling plant at s and a landfill at k.

pjj:-expected number of trips a truck of type | can make per day between an incinerator at j and an incinerator atj’.
a :- Capacity (in tones) of a truck of type 1.

Cij, Cim » Cin » Cis , Cix :- respectively transportation cost per unit of waste from a waste source at i to j, m, h, sk.
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i ,dine Ak ,dii ,dg iy~ respectively transportation cost per unit of waste carried by a truck from an incinerator atj and j’, an
RDF plant at m, an SOM plant at h, a recycling plant at s to a landfill at k, while dj;is the transportation cost per unit of waste
carried from an incinerator at j to an Incinerator j'.

Ci.Cjs Cm » Ch , Csi-revenue respectively per unit of waste from an incinerator at j and J', an RDF plant at m, an SOM plant at h,
and a recycling plant at s.

fi:- cost of buying a new truck of type 1. (I=1, 2, 3, .....L)

d;:- amount of waste at source i.

Pj ».Pj»PmsPhsPs,P1ji- Fraction (%) of unrecovered waste respectively at an incinerator at j and j’, an RDF plant at m, an SOM
plant at h, and a recycling plant at s, that requires disposal to a landfill while Pyj is the unrecovered waste when sent it from j
to j'.

Qj» Qs Qm» Qu, Qs , Qx :- Capacity per day respectively for an incinerators at j and j’, an RDF plant at m, an SOM plant at
h, and a recycling plant at s, and a landfill at K.

8; ,8j,8m  On , 8 , 8y~ respectively fixed cost incurred in opening an incinerators at j and j', an RDF plant at m, an SOM plant
at h, and a recycling plant at s, and a landfill at K.

Yy %5 Yo Th 5 Vs » Y- - respectively variable cost incurred in handling an incinerators at j and ', an RDF plant at m, an SOM
plant at h, and a recycling plant at s, and a landfill at k.

3.0 OBJECTIVE FUNCTION

The objective function represents the over all daily waste management cost. The first component (F1) gives the investment
and waste handling expenses as well as transportation cost. The second component (F2) gives the total cost for buying all
trucks required in the daily management of waste. The third component (B) gives the benefits at the plants owing to the
production of electric energy, compost, refuses derived fuel, and recycled material.

F(z,w,X,Y,V)= [Z 6,2, +7w)+Y (6,2, + 7o)+ Y 6z, + 7w, )+ S (6,2, + 7,w,)
J & m h
"6 ) T 6z, 1) |
5 k

+[):C,,a X+ Coa X, +Y Cha X, + Y G X, +) Cha X,.,‘]
il im h is ik

+ [Z dyaY,+yd,at,+Y d,at, + Z dyaly +3, d_ﬂaYd}
* T mk =

+§dﬂ.a’ Vﬂ. [3‘-1]
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E(x,y,v)=Y. £(T) .32
B(w):? CJ(I_F’J)“’;""Z Cj'(l_pj‘)wj"i-; Coll=p,
4; C"(l_ph)whd'; C,(t-p,)w,

So the objective function F to be minimized is

...[3.3]

F=F,+F;,-B ..[3.4]
Constraints:_—
Mass l_ialance Constraints:

Total waste moved from each waste collection point i should at least be equal to the amount of waste found at that point

2 aXp+Y @ X, +Y aX, +Y X, +Y @ X, 2d, i, ..[3.3]
&lm glh gls

gl glk

In Constraint (6-9)Amount of waste carried away from every plant to landfill should at least be equal to amount of waste
found at that point '

pw, <> aY, =10 ...[3.6]
P, <Y al, j=1.J " [3.7]
P¥n<dal, — m=LM sl 58]
LW, < Za Yy h=1.H ..[3.9]
pw, <Y al, s=1.s | .[3.10]

. Amount of waste carried away from j to j’ should at least be equal to amount of waste found atj.

P, S Y.aV,, [3.11)
Capacity limitation constraints:-

In constraints (12)-(i6) the maximum capacities for processing plants are accounted. Means amount of waste taken to
different plants should not exceed the plant capacities.In constraint (17) same thing done for sanitary landfill.

wp < QZy j'=1,...J[3.12]
W <QZ  j=1,..J | [3.13]
W <QuZ, m=1,...M[3.14] *

Wy <QuZw  h=l,..H ..[3.15]
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w, < QZ,  s=1,...8 ...[3.16]
< QuZ k=1,...K : .[3.17]

Technical constraint:-

Constraints (18)-(27) means that, once the flow to either plant or sanitary landfill is positive, that plant or landfill must
actually exist. In constraint (28) same thing done for j'.

w X< QZ , 1=1,...,L,i () =1,...,.1,0), g=1,....G ...[3.18]
@ XingS QuZm » [=1,....L, i, (m)=1,...1(M),g=L....,G ...[3.19]
o Xing< QuZy , I=1,...,.L, 14, (h)=1,...JH), g=1,...,G ...[3.20]
W Xig< QZs , 1=1,...,L,1i,(s)=1,...,1,(S), g=1,....G | ..[3.21]
G Xig< QZi , 1=1,...,L,1i, k) =1,...,I(K), g=l,...,.G ...[3.22]

o Yje< QZc, [=1,...L,j, ®=1,...J, (K), g=1,...,G[3.23]

0¥pS QZi, I=1.L, § 0= 0 (K), g =1,....G ..[3.24]
& Yo QZi , 1=1,...,L,m, (K)=1,....M(K), g=I,...,G[3.25]
o YieeS QZi » 1=1,...,.L,h, (k) =1,...H,K), g=L.....G .[3:26]
o YaeS QZc , 1=1,....L,s, (K =1,....8, (K),g=l,...G 327
& VS » QZp 151,00k, 3,009 =Leood, 09, 8=1,...,6 ...[3.28]

Variable conditions:-

Xjginteger>0, /=1,...L, i, ()=L,....1, (), g=1,....G ...[3.29]
Ximginteger=0 , [=1,...,L,i, (m)=1,...,I, M), g=1,...,G ...[3.30]
Xnginteger>0 , I=1,...L,i, (W) =L....I, (H), g=1.....G [331]

X;ginteger>0 , 7/=1,...L,i, (s)=1,...,I, (8), g=1,...,G[3.32]

Xyginteger>0 , [=1,...,.L,i, &) =1,...., (K), g=1,....G ..[3.33]
Yjginteger>0 , [/=1,..,L, j,(k)=1,...J, (K), g=I,....G ... [3.34]
Yjyeinteger>0 , /=1,...L,j, &) =1,....7, (K),g=L,....G ...[3.35]
Yuginteger>0 , /=1,...L,m, k)=1...M, K), g=1,....G | ...[3.36]
Yiginteger>0 , /=1,...L,h, (k)=1,...H, K), g=I....G ..[3.37]
Ygginteger>0 , /=1,...,L,s, (k)=1,...,S, (K),g=l,...,.G BN i X

Vignteger>0 , 7=1,...L,j, ()=1,...,], @), &=1,...G ..[3.39]
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Variables in (40)-(45) are defined as Boolean. These are used to determine the existence of either a plant or a landfill.

Z€ {0,1}J=1,...

Z:€ {0,1} i'=1,...713.41]

Z,€ {0, 1} m=1,..M

Zi€ {0, 1} h=1,...H

Zg€ {0, 1} s=1,...8

ZE€ {0, 1} k=1,..K
Definitions:-

In definitions (46)-(55) which were aJready mentioned in the beginning,
trucks of type / from waste sources to plants, waste sources to landfills,

same from j to j'.
Xigg= aXge, [=1,...,L, i, ()=1,...I, (), g=L,....G
Ximg™ imXimg , /=1,...,.L, i, (m)=1,...,I, (M), g=1,....G
Xing™ anXing » [=1,...,.L,i, (h)=1,....I, (H), g=1,....G
Xisg™ BisXisg , [=1,...,L, i, (8)=1,...,1, (S), g=1,...,G[3.49]
Xig= anXig , 1=1,...L,i, k) =1,....], (K), g=L,....G
Yie= biYig, [=L...L, j, ®)=1,...J, (K), g=1,...G
Ying= buyjrg, /=L,...L,J, ®)=L,...J", (K),g=l.....G
Yukg™ bukYmkg » /=1,...,L,m, (K)=1,....M, (K), g=1.,....G
Yueg= budueg » /=L,....L,h, K)=1,...H, (K), g=1,...,G
Yag= baXag » - /=1,...L,s, ®)=L....8, (K),g=I,....G

Viig™ PiVis > 1=L...L,j, (0=1...J, (7,g=1,...G [3.56]

...[3.40]

...[3.42]
..[3.43]
..[3.44]

...[3.45]

gives the expected number of trips made per day by
and plants to landfills are given. While (56) gives the

..[3.46]
[3.47]
...[3.48]

...[3.50]
.[3.51]
..[3.52]
..[3.53]
..[3.54]
...[3.55]

Definitions (3.57 — 3.61) indicate the amount of waste transported from source (i) to processing plants. While (62) indicates
amount of waste from incinerator (j) to (j*). Definition (63) gives amount of waste from all waste sources to a landfill K.

w=YgX, J=l-—-o-- J
i

Wo=D 0 Xy M=12————M
gli

W= @ X, h=12-——-H
gli

..[3.57]
...[3.58]

..[3.59]
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w,=> X, s=12-———s ...[3.60]
gl

Wk =zan‘kg k=1,2____'K . ¥ 3 -..[3.61]
gli

wy=YaV,, j=12----J ..[3.62]
&

glm glh gls

th=wk+Y @Y+ Y+ Y +0. 0 Ve + Y Y, k=1,2.K [3.63]
gy g)y. e

. Equation (64) gives total amount of waste collected from all waste sources per day. (This excludes waste generated by
plants).

'W=ij+2wf+2wm+Zwﬁ+Zws+Zwk ...[3.64]
J 4 m h s k
Equation (65) gives total number of trucks used in the model.

T=3%x, Y +Zx,-},g ) Ry + D ug + D Viig +Z;‘1?'kg
&

gif gim gih gis gik gk
AL Fat Y B AN Y vy ..[3.65]
gmk ghk gsk &l
An integer Linear model example illustrating how the above model problems can be solved:- .

Let

1: denote a waste source (ie collection point)
2: denote a first incinerator

3: denote a second incinerator

4: denote a landfill
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Figure (2) illustrate a simple model, where the waste source i, the incinerators’ j and j’, the landfill k, are all known. Here all

trucks are of the same capacity.
@ | (1)
1
~ \2

Figure(2) A simple model representation

Variables:-

Uy Uy -respectively represent the amount of waste (in tons) collected everyday by trucks of capacity 5 tons from a source at
node1 to an incinerator at node 2, and a landfill at node 4.

V23, V24 Vg~ respectively represent the amount of waste (in tons) collected everyday by trucks of capacity S tons from a

incinerator at node 2 to an incinerator at node 3, and a landfill at node 4 while Vasrepresentfrom an incinerator at node 3 to
2landfill atnode 4.

X2, X14 :- respectively represent the number of trucks of capacity 5 tons used everyday to carry waste from a waste source at
nodel to an incinerator at node 2, and a landfill at node 4. ;

Y23, Y24, ¥34:- respectively represent the number of trucks of capacity 5 tons used everyday to carry waste from an incinerator
at node 2 to incinerator at node 3 and a landfill at node 4 and also from incinerator at 3to a landfill at node 4.

t4- represent the amount of waste(in ton) transported everyday to an incinerator at node 2,and a landfill at node 4.
Input data/parameters:-

18, 15:- - respectively represent the number of trips a truck of capacity 5 tons can make everyday to carry waste from a
waste source at nodel to an incinerator at node 2, and a landfill at node 4.

4,1 :- respectively represent the number of trips a truck of capacity 5 tons can make evefyday to carry waste from a
incinerator at node 2 to an incinerator at node 3, and a landfill at node 4.
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2:- represent the number of trips a truck of capacity 5 tons can make everyday to carry waste from a incinerator at node 3 to a
landfill at node 4.

Rs. 400,450:- respectively are the transportation costs per ton of waste transported from a waste source at 1 to an incinerator
at 2, and a landfill at 4.

Rs.100 :- the transportation cost per ton of waste transported from a incinerator at 2  to an incinerator at 3,from an
incinerator at 2 to a landfill at 4 also from an incinerator at 3 to a landfill at 4.

Rs.3000:- is the revenue per unit of waste from an incinerator at 2 and also from an incinerator at 3.
150:- is the amount of waste in (tons) at a waste source at 1.

0.1:-is the fraction (%) of unrecovered waste at an incinerator at 2.

150, 50, 1000:- are the respective capacities for incinerators at node 2, node 3, and a landfill at node 4.

Rs.600, 600, 200:- are the respective costs of handling a ton of waste at an incinerator at 2, an incinerator at 3 and a landfill at

Fl

4,
Rs.151acks:-cost of buying a truck.
The model:-
This model is an integer programming model and we seek to minimize the cost
F,+ F,—B, where
Fi = [(400 *5 *18*x;,) +(450% 5*12* x,4 ) + (100 *5 *1 * y54) + (100*5* 4*y,;)
+ (100*5* 2*y3,) I+ [(600*5* 18*x,, ) + (600*5* 4*y,3) +(200* t4) 1[3.66]
F, =15, 00,000%(T)[3.67] |
B = (3000*5*18* x;,) + (3000*5*4* y,;)[3.68]
Constraints:-
5*18*x;, + 5*12* x4y 2150 ...[3.69]
0.01*5 *18*x,,< 5 *1 * y5[3.70]
5 %4 % yyu>5% 2%y3[3.71]
The reélrietibn on the waste material goes from node 3 to node 4 is given by,
5% 2%y34<9[3.72]
Capacity limitation constraints are,
5*18*x;; <150 | _ ...[3.73]
5* 4*y,; <'50[3.74]
t4< 1060[3.75] .
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Variable conditions:-
X12:X14,Y23, Y24, Y34 integer 0 ...[3.76]
Definitions:-
ty =5%12% xyq + 5¥1% Xy + 5% 2%y, . [3.77]
"T= Xz +Xpa +¥23 + Yau + Y34 [3.78]

The solution:-

We begin by generating a feasible solution by carrying all the waste from node 1 to node 2, since there are benefits at node 2
and node 3.

There forex;4 =0
From inequalities (69),(70)£71), (72),(78) respectively we get X;2 =2,y = Ly =Lyy=1,and T=5
After putting the values of varigbles in equations (66) - (68), we get
Fi=19, 65,00 F,= 75, 00,000 B =60, 00,00
F,+F,-B =70, 96,500
4.0 CONCLUSION

The model developed in the paper is general in nature which may be suitable to almost all urban areas. We have used second
incinerator to gain more energy and also to minimize the quantity of waste which is sent to landfill. The paper may be a
useful tool in planning and management of municipal solid waste transportation, recycling, composting, and disposal
program. It can also be helpful to design plants and landfill.
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FRACTIONAL DIFFERENTIATION OF GENERALIZED
HYPERGEOMETRIC FUNCTION
R.K. KUMBHAT AND (MRS.) SHANU SHARMA

ABSTRACT

The present paper is all about the fractional differentiation of the generalized hypergeometric function , R, (.).The

fractional differential operator is Dy,  .Our result provides interesting unification and extension of a number of new

and known results. Some special cases and generalization of the hypergeometric function have also been worked out.
Keywords: Fractional differentiation, Fractional calculus, generalized hypergeometric function.

1.0 INTRODUCTION

The fractional differential operator is worked out by many mathematicians like Garg and Arora [2 ] and Nigam and Garg
[3 1. The fractional differential operator is defined as :

= T(u+rk+1) nk
" 4 (11
D=1 T (b

where & # g +1, a and k are not necessarily integers.

Virchenko Kalla and Al-Zamel [5 ] gave the generalized hypergeometric function , R, (4, ;¥ ; T; ) which is defined

in the following form :

r F'() @A), L(B+7r) 2
R =R(AB;:v;T; s (1.2
2RI(2)=R (A4, Bsy;tTi2)= F(ﬁ)z IG+erirl (1.2)
whereréR,f)O,[Zl(l, .
and its integral representation is given
r I'(y) 51 y-p-1 4 :
K@) =——— j A=y -2y & .(13)

I(B) T'(y -

where R(B,7)>0,R(B-7),t>0,|z| <1

Recently Saxena, Chena Ram and Naresh [4 ] extended the generalized hypergeometric , R as 3 Ry () as follows :

I'(6)Ir'w i(’”' T(B+kr)I(y+hkr) 2"
I(AT() = TS +k)T(u+kr) r!

3R (2) =Ry (4, B,y 30,157 52) = ...(14)
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where 7€ R, 7>0, | z|<1

and its integral representation is

1
JRI(2) ﬁﬁ)r?((‘tﬁ_—ﬂ)Ir"‘(l—r)“"",Rl(/l,y;é;k;zt’)dt (15)
0

where R(f3,7,6,1)>0,7> 0,z <1

The generalized hypergeometric function R,(A, By ;7;2) holds the following relation when 7 = » where nis a

positive integer as

zﬂu(ﬂ,ﬁ;r;n;Z)=A2,,HF2,,(1,£,ﬂ”,...,ﬁ”"‘l;l,?’“’”_ yn-1. }

n o n n n n T )
...(1.6)
ror&rlty...rlrrl
where A=n?7 Lo 11 +‘:*1 (1.7
r(mr(g)r(ln—) ...... Ftoy

-

Particular Case: When 7 =1, (1.2) and (1.4) reduce to hypergeometric function 2 F(.) and ; F,(.) respectively. Also

for y = p , (1.4) reduces to generalized hypergeometric function , R,"(.) studied by Virchenko et.al.[5].

2.0 MAIN RESULTS
The fractional derivative of ,R,"(.) is:

, r  T(u+pk+1)
Diaslx* R Bysnx =1L Ttk —a+1)

sRy (A, By + pk+ 1y, pu+ pk—a + 1,75 x7 ) x P ' (2.1)
Proof: Using the definition of the generalized hypergeometric function

Ri(a, B; y;'r;x'} , the left hand side of (2.1) can be written as :

p, I D, TB+7) 1 T =D, I(B+7)
Dhasl # % ooy VTS T eyt e

")
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Using (1.1), we get

I'(y) 3 WD), LB+ 17 Tt pktlte) v
T(AS T(y+o)r! yallu+phk—a+l+m)

n-1
N 1—-[ I'(u+ pk+1)

R/I";+k+l;,+k_ +1;;r p+pk
LT ph—a+n 2 b+ P ALy pv ph-a 1o )

Generalization of the hypergeometric function , R, (-):

Dy yx[%* (i Ry (A0, @y evers @3 Bs B evenes B3 737 )]

=ﬁ T(u+ pk+1)
o T(u+ pk—a+1)™?

R, (40,0550, o+ PE+ L B, By ..., B,

M+ pk—a + ;7 x7 )xH ..(3.D)

where

reR, >0, [x|<1, R(u+pk—A+1)>0

3.0 SPECIAL CASES:
Our main result provides unification and extension of various known and new results

on fractional differential operator

(i). When we take 7 =1 in the main result, it reduces to

Dy [x“zF[(fL ﬂ;r;x)]

F,(A, B, u+ pk+ Ly, u+ pk—a +1;x)x"?* ...(4.1)

_ﬁ' T(u+ pk+1)
o T(u+ pk—a+1)°

(ii). When 7 =1 and ¥ = f3 the main result (2.1) reduce to
Dﬂ

k.a,x

[ (1-x)]

=ﬁ C(u+ pk+1)

F (A, u+ pk+1;u+ pk - s x)x APk
Tt et D)’ 1(4, 4+ p+ ptp a+1;x)x “42)

p=0

o X ; '
(iii). On replacing x by 7 and taking 4 — 0 in (4.1), we get
D:,a,x[xy 1}'-}(13;?’;35)]

2 T(u+ pk+1)
= F,(B,p+ pk+ 1Ly, u+ pk—a +1;x).x*7* (43
L [(p+pk—a+1)2 2 b D ) (4.3)
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ABSTRACT

This paper is in continuation of the earlier paper by the author in which we have obtained an interesting reduction Jormula
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1.0 INTRODUCTION
We recall the definition of generalized Kampé de Fériet’s function as follows [5]

{ m n

- }}(aj)”s i (Bj)r H('Yj ), r's!

J j=1

Fp:q-k (ap) : (bq ); (Ck) X x Jli(aj )r+s lj-!:(bj )r g(cj )s Xr ys
[(a,):asm);(yn) | y} '

(1.1)

Where for convergence
(i) ptq<f+m+1,p+k<f +n+1,/x| <o, |y| <0
or

(i) p+tq< £ +m+1,p+k< £ +n+1and

X[ +}y[7 <Lif p>

max ﬁx|, |y]}<1, ifp<e

Although the double hypergeometric series defined by (1.1) reduces to the Kampé de Fériet function in the special case:
g=kandm=n )
yet it is usually referred to in the literature as the Kampé de Fériet series.

The following are the cases in which the Kampé de Fériet function defined in (1.1) can be expressed in terms of generalized
hypergeometric series.
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[ SRS+ 4 X [0 PUSI o A
Sl = F| R x+y]
[BB | = o BB, |

0q:s

| T e O S 5eens Y X 5., 0 Youens Yy .
24 B = ,F, " x ,F;[ y
[-;Bl"“’Bq;al?‘"sas }’] 3 q[B]r“}Bq | Sl,...,ﬁs

g1 a,,...,ap;v;c X a,,...,ap;v+c
Fqﬂ:() | = p+in | X

i ﬁl""’ Bq T X | BI""’Bq

p0;0 -
= Fq:l;l T p+27q+3

|'c:L,,..-.,Otp;—;— X | 0yyenns Oy, A2V + 0 — 1)
| F | 4x
Bis-sBgsvio | x BisrsBysvio,v+0 -1

where, and in what follows, A (£ ; 1) abbreviates the array of ¢ parameters
A A+ A+L-D
AN 14

For more detail see [5, pp. 28-32].

R .

Very recently, the author [1] has obtained an interesting case of reducibility of Kampé de Fériet Function closely related to
the result (1.6) by employing contiguous Dixon’s theorem obtained earlier by Lavoie, Grondin, Rathie and Arora [3]. In this
paper we have obtained one more interesting result for the reducibility of Kampé de Fériet Function.

In 1985, Pathan, Qureshi and Khan [4] obtained the following result for the Kampé de Fériet Function [2].

a):d-2e+1;d
o R
(b,):2-2e;2e

p
l(ap),-l-(ap +Di(e-d+2),(E +d—e) | xe-d2e-D[ [ (@)
= 2pe2F2qe 12 12 11 2 % | 4%’ |- q =
‘i(bq ),E(bq + 1);5,5(1 + 2e),5(3 —2e) 2e(1-e)[ (b))

i=1
—1 a + —l a +1‘ 1+e—d 1—e+d
2( ] 1)92( p) a 9( )9( )

1 1. 3 | 4
E(bq +l)s_2'(bq)+1;§'s(2_e)!(e+l)

2p+2 F2q+3

(1.6)
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They have obtained the result with the help of classical Dixon’s theorem on the sum of a 3F viz.

1 1
[ a,b,c | ] T(1+§a)l“(1+a—b)l"(1+a-c) 1"(1+Ea—b—c)
3t = )
(1.7)

provided Re (a—2b —2¢) > -2.

In 1994, Lavoie et al. [3] have obtained a large number of summation formulae closely related to (1.7) of which one is given
below:

1 sl
a.bic 1“(5 a)l'(a —b)r(l +a —c)I“(Ea -b-c+1)
sk a-bl+a-c 1] - 1. & 1
’ l"(a)I“(Ea -b)r'(+ Ea -c)'(a-b-c+1)

1 1.1 1
Ia-b)'(I+a-c)[(-a-b-c+)(—+—
) (a-b)'(I+a-c) (2a ¢ 2) G 3%

21"(a)1"(%+%a—c)l“(a—t;-c+l)l“(%a—b+%)

..(1.8)
provided Re(a-2b-2¢)>-1
The aim of this research note is to obtain one result closely related to (1.6) by employing the summation formula (1.8).
2.0 RESULTS REQUIRED
The following results will be required in our present investigations.
oo oo o0 m
2. D Am)=Y > A(n,m-n)
m=0 n=0 m=0 n=0
. .20
@, = CD'T(@+m)
" D(e)(1-a-m),
..(2.2)
-1)"m!
(m=n)!= D)
(-m), .

(23)




153 | Ganita Sandesh Vol. 24, No.2, 2010

_amf1 ) (1,41
(o), =2 [2a}m[2a+2)m

(1 _a)lm
oy - D@
(1 - a’)m

(2m)! = 22'"(%) m!

(m+1)! = 2“‘@) m!

1 1 1
=a2™| —a+1| |za+=
(a)2m+l (2 o )m(z o 2]“1

3.0 MAIN RESULT

The following result for reducibility of Kampé de Fériet Function will be established in this section.

| (@):d-2e+1d
ok I | x,—x
(b,):2—2e2e~1

1 1 1 1
E(ap),i(ap + 1);5(25 -2d+ 1),5(1 —2e+ 2d)

= s o | 4779 x?

2p+2-2q+3

1 1 1 1., 1
~(b.),=(b. +1);=,~(e-1),=(3-2
505 (0 10,5 (e~ D5 (3-2¢)

(2.4)

(2.5

.(2.6)

Wl

.(2.8)

-(2.9)
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1 %(ap),%(ap+I);(e-—d),(l—e+d)

3 1.1 1
E(bq)’i(bq +1);(1—e),5,e

E
2p+2-2q+3
2%

c-d) %(ap +1),%(fp +2(e—d+1),(I-e+d)

(3—1) 2p+2-2¢+3

1 1 3
E(bq + 1)’5(]3*1 + 2),5,(2 = e),e

%(aIJ + 1),%(&1, + 2);-%-(2&3 -2d + 1),%(3 —2e+2d)

2p+2 FZq +3

1 1 1 3 1
E(bq +1),5(bq +2);E(3-2e),5,5(2e+1)

4.0 DERIVATION

To prove (3.1), we proceed as follows:
Let

] (@):d-2e+1:d
_ peli P ; _
5= T [(bq) :2-2e2e -1 | % x}

It can be written in power series form as
& @p)na(d—2e+1),(d), (D" x™"

=33

S5 (b)n.(2-2),2e—1),mn!

which on using (2.1) reduces to
S= i i (ap)m(d —-2e+ l)m—n (d)n(—l)n x"
m=0 a0 (b)n(2-2¢), .(2¢-1),(m—n)!n!
By virtue of relations (2.2) and (2.3), we have
2, (a,),(d—2e+1),x" l: 2e~1-m,~m,d | 1]

S=
,,,Z_(:, (b)n(2-2¢),m! **|2e-12e—d-m

4r-a-ly2 |

x(d—-2e+ l)ﬁ (a,)

(2e—-d- l)ﬁ(bi)
i=1

4raix? |

| 4779 x?

1
(e—d—~2—)

1
2(e "'E)

-(3.1)

..(4.1)
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On using (1.8) in (4.1), we get

(2e -1 —m)m(e—d—%m)m

+

1 1
[2e—1~m,—m,d| } (2e-1-m),(e-d+_—-—m),
3 =
(6=~ 5 m)y(2e—d-m), 22e-d-m), (e~ m),

2e—1,2e--d—-m

- (42)
Substituting the values from (4.2) to (4.1), we get
o (@,)n(d=2e+1),x"(Ge~1-m),(e~d+~—Lm),
§= 2 2

"0 (b,)n(2-2e), m!(2e—d —m), (e~ % _ %m)m

o (ap)m(d-2'!e+1)mx“‘(2e-—l—m)m(e—d—%m)“I

+

=0 (b, ), (2~ 2e), m!2(2e—d —m)_(e— %m)m 2m+1)!

$=Y A(m) (Let)

m=0

. We know that

i A(m) = i A(2m) + i AQm+1)

m=0 m=0

...(4.3)
Now,

1
- = (a )m(d*2e+l) mxzm(ze_l_zm) m(c'_d+——m)m
z A(2m) = E P : 2 2 2

"0 (by)gm (2—26), 2m!(2¢ —d — 2m),. (e—%-m)zm

i (8,)2m(d = 2e +1),,x*" (26 =1 -2m),, (e ~d —m),,_
mo (b )yn(2-2¢),,2m!2(2e—d-2m), (e- m),.,
using (2.4), (2.5), (2.6), and (2.7) in the above result, we get _ '

— 1 1. 1, 1
- © 92p—q-Nm " s it —d+2) (—— 2m
$ romy- G2)a(58, + Dale=d+2), (o —e+d),x
m=0

acd Lpocs + 8 ady. e-dy A -
PGt Pam a5 -0,
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zz(p—q—nm(% a,)n (% a,+ %)m (e—d),(1-e+d), x™

: Loy o+ 5 mcdy a-
° 2(2bq)m(2bq+2)mm!(2)m(1 ) (&)

Summing up the series, we finally have

" L@ (a, +1; L  (2e—2d+1), 2 (124 24)
Z A(2m) = 2p+2qu+3 2 2 2 2 4l x?
m=0

1 i 11 1
2 (8a)s5 (0 +1);5,2(2e - 1), 2 (3~ 2¢)

L1 . %(ap),%(ap+1);(e—d),(1—e+d)

p—q-1 2
2 2p+272q+3 4 X

1 1 1
E(bq),'ﬁ-(bq + 1);(1 s e),E,e

...(4.4)
Also,

i A(m+1) = i (@p)amaa(d—2e+1),,,, X" (26 =2 -2m),,, (e —d—m),,,,
m=0 m=0 (bq)2m+l(2 —2€)y,,,(2m +1)!(2e-d-1- 2m),,, ., (e—1- m),,.,

@ (ap)Zm-l-l (d —-2e+ 1)2m+l x (23 =2~ 2m)2m+l (e -d- _;_ - m)2m+1
+ .

" (0g)2mn (2-2€) 30, Cm+1)I12(2e-d-1- 2m),,,, (e— % ~ M)y

Using (2.8) and (2.9), we get and after summing up the series finally we have

. x(d-2e+ 1)f[ ()
D AQm+1) = - =]

(2e—d —l)ﬁ(bi)

i=l

1 1 1

_ —(a, +1),—(a, +2);(e—d +1),(1—e+d) (e-d--)

(e il) 2p+212q+3 27" 12 p 1 3 S b 12

-1 5B D5 (b, 4252, 2-e)e 2e-3)
Z(a, +1), 2 (@, + 22 (2e—2d +1), L 32+ 24)

2p+2 Faqe3 2 2 2 2 | 4r-al x2

: : 23-20,2. 10
7 B0 0,5 (b +2);:2(3-2€), 2, ~(2e +1)

..(4.5)
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Substituting the vaiues from (4.4) and (4.5) in (4.3), finally we get the desired result (3.1 ).

| Clearly our main result (3.1) is closely related to (1.6).
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1.0 INTRODUCTION

We recall the definition of generalized Kampé de Fériet’s function as follows [5]

Fp:qfk [ (ap) : (bq )a (cg) ‘ X] _ o JI;]l:(aj)r-»s Jl}(b'l)r ,1;]1:(0])’ x' ys
‘m;n (U.g) : (ﬁm ); (Yu) Yy r,s=0 f{(aj)ns ln—]-!(ﬂ_;)r li[('rj)s rls!
w(11)

Where for convergence
) ptq<f+m+1,p+k<f +n+1,]/x| <oo,]y| <w
or

(i) p+tq< £ +m+1,p+k< £ +n+1and

]x[i'i'? +|y|F—1_f <lifp>¢

e T L a——

max ﬂx],]y[}< Lif p</

Although the double hypergeometric series defined by (1. 1) reduces to the Kampé de Fériet function in the special case:
q=kandm=n




159 | Ganita Sandesh Vol. 24, No.2, 2010

yet it is usually referred to in the literature as the Kampé de Fériet series.

The following are the cases in which the Kampé de Fériet function defined in (1.1) can be expressed in terms of generalized
hypergeometric series.

o 1] o o)
q:oo B]’ $B Bl! ’B y

(12)
500y eons i Py ,7, X L Y, Pl
Fi}pr 1 P = F p x] rP; [ Y:|
|: sBl’ ansap | Y} ’ q[Bpmqu I 81,...,83 |
(13)
Oyyens O 3V30 | X | o,...0l ;V+C
st I P - E]? 4 X
Q§'°[B|s--qﬁq;";" | x_ pHTa Bpm.an |
(1.4)
L | X | e Oyyens Oy, A2V + 6 —1) | 4x
i Bh---qu;V;c X_ i B],..-,BQ,V,G,V+G—1
(1.5)

where, and in what follows, A (£ ; 1) abbreviates the array of £ parameters 2

& A+1) (A+£-1)
r o4 " 1
For more detail see [5, pp. 28-32].

. =280

Very recently, the author [1] has obtained an interesting case of transformation of Kampé de Fériet Function closely related
te the result (1.7) by employing contiguous Watson’s theorem obtained earlier by Lavoie, Grondin and Rathie [4]. In this
paper we have obtained one more interesting result for the transformation of Kampé de Fériet Function.

In 1997, Exton [3] obtained the following results for the Kampé de Fériet Function [2].

z-z,  wies2 | diC ,—z,lzl+—l—;c ,lzz,lz +l 4xy, 4xy,
(1-x) B, | g gt T Erma ey | Sy
d-Lpzp, (=% (-%)

3 d-2z,-2z,-1) x(1—x)75"

d-1

: 1 1.1 1. 1 1
Ef:u z,+z2—d-!-2;cl,2 2z,+2,c2,222,2zz+—| 4dxy,  4xy,

z,+z7,-d+Lpsp, (=07 A-%)’
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S o D, (), (2,), x™ ™ 1,2, + my,—m,
= Z Z P I . c+2Fp I e
m;=0 m,=0 ((‘I_]')rnlq.m2 ml!mz! pl
Cy,Z, +m,,—m,
c+2Fp[ P, | _Y2:'
(1.6)
and
: q i .
12| d;¢,=25¢,,— 2, —4x -4 | (d-z-2z,-1)
Fl:l . 2 : 2 29 2 | —
d-1;2¢;2c, (1=%)7"(1-%) -1
g Lo 1 4x -4
Fa]-::z zl+zz—d+2,c,,521,c2,gz2 - xz, - x2
| z) +z, =d+1;2¢,52¢, . (1-x)" (1-x)
1cl+l-lz lz +—1-—C'lZ l;z Fim—ig
_(-x)rm p| 20 272 PR RS,
_(1 x)l 1:"]:] 1 1 1 1 l X,X
—d——;—+c;;=+c,
2 272
A(1.7)
Exton has obtained the result with the help of classical Watson’s theorem on the sum of a 3F; viz,
1 locd 1 1 1 1 1
,b, I'(Irc+-)'(~=+—a+=b (= ~—g——b+¢
SF{] a,b,c ) (2) ( 2) (2 7%, ) (2 il
—(+a+b),2¢c 1 1 1 1 1 1 ) 1
2 [(z+-a)(=+=b)[(--—a+c I'(=-=b+c
GG MG 309 . Tg=3bte)
..(1.8)

provided Re (2c—a—b)> -1

In 1992, Lavoie, Grondin and Rathie

[4] have obtained a large number of sﬁmmation formulae closely related to (1.8) of
which one is given bélow:

| 11,1 1 | el
2a+b-21—~_ —b+)'(c+ ) (c-—— Sebib
; 2[1 a,b,c | Jz Gyl Pre-za-3b+9)
5(1 +a+b),2c+1 r(%)r(a)l“ (b)
i 1 i T O, P |
e FGa+rChb+s
r(za)r(zb) i (2a+2) (2b+2)

F(c-%a+%)l"(c—%bf%)‘ I‘(c—%a+l)1’(c—%b+-l)

(1.9)
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provided Re (2c—a—b)> -1
The aim of this research note is to obtain one result closely related to (1.7) by employing the summation formula (1.9).

2.0 RESULTS REQUIRED

The following results will be required in our present investigations.

(2m) ! =2%" (%J m!
' (2.1)

(a_)Zm =g [%cxln [%a +%)m _
: (2.2)

SE,
' 23

3.0 MAIN RESULT
The following result for transformation of Kampé de Fériet Function will be established in this section.

—4x -4x _(d—z,—zz—l)x
(1-x)*"(1-x) (-1

1
Flf:lz d;c,,Ez];cz,—z2
d-1;2¢c, +1;2c,

-4x  —4x
(1-x)*"(1-x)

1
Fi2 z, +2, —cl+2;c,,Ez,;cz,§z2 l
Z; + 2, —d+1;2¢, +1:2¢,

{111 .1 11
- b 5 2,221,221+5—cl,222,222+2—02
= (l‘x)l S 1 11 1 x?,x?
—d——j=+C;—+C,
9 2'3 g
1 ld+l'lz 2 lz +l clz lz +l—c
; -gy 2120272772727 Ty o™ R
9 22’0 V3
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4.0 DERIVATION

To prove (3.1), we proceed as follows:
Ifwesetc=1,p=2,y; =y =-1in(1.6), we get

1 1 1 1

=3Cp =2y, =2, + -4x  -4x :| _(d—zl—zz—-l)x

1
sl die,,—2z,,—2, +
B rgvgn arrgepgnty | =,
d_l;Pl.vpz,lipl,pPz,z G i Uy X) (=l

1 L. 1 1

Ef[z'+zz—d+2;c"%z %z,+—‘c2 Ezz,—z2 3 | -4x  —4x

(1-%*"(1-x)

2 2
z,+2z,—d+1;p,,,p,,3P 2:P22

- g-xf== 3 3

m;=0 m,=0

(), B (25 ) X ™ E €12y +my,—Mmy '
(d =D, s, my!m,! > P115P21

3F2|: |1

P1,2:P2
et pl’!=ch+l,pl,2=2c:2,p2,.l=';_zl+%and92,2=5zZ+§,-Weget
dc 1 1 l'c 1 1 1
Flig ] 1522'132 25 252 ’2 Z, + 2 | —4X2’ —4){2 _(d_zl—zz_l)x
| d-1;2¢{+1, 1z,+1 202,1 2.|.l (I-x)" (1-x) d-1
2 2 2 2

111 1 1.1
s z,+zz—d+2,c‘,azl,gz,+5 c2,522,522+5 wlf A%
12 2-2 2
z, +z,—d+1;2¢, +1,— s —Z, +— 2&:2,-1-22 +l (1-x)" (1-x%)

2712 2" 2

R

m;=0 m,;=0

Do, B Bo)o, X | TROE
(d=1)p, 4, m;!m,! e Ez,+-2-,201_1 .

b -l-zz+l,2c2 |1
2 2
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Using the results (1.8) and (1.9), we have

1 1 '
E‘fl:dc”ZZ“cz’ z, | -4x  —4x :|_(d—:1:,—z2—1)x

d-12¢, +12¢, (A-%)" (A=x) -1
' 1 1
1:2 Z,+zz—d+2;cl,—zt,cz, z, -4x  —-4x
Fl:l 2 I 1 am 2
zi+zz-d+1;201+12.c 1-x)*"(1-x)
' z;-2 1 1 1 1 1
_ (1—x)n i i )y, i, B, (), X 2 1"(52,+5)1“(c.+5)1“(c1—5z,+5)
m A o= I)m w2 m' m?' 1"(%)1"(~m;)1"(zl o = I'[l.)
l"(—lm )1“(~1-z +1m) l"(—z +— : m, +— )I‘( -lm)
2 gl gt _ g 9 21

1 1 1 1 1 1 1 1
(e, + Em, + E)F(c' SZamom + E) I'(c, +1+ -2—1111)1“((:I “3% +1- Eml)

1 1 1 1.1 1 5
F(—)F(02 + -2—)1"(5 zZ,+ —2-)1_'(5 = EZZ + Cz)
1 1 1 1 1 1 1 1
F("‘ = _'mz)r(z ot 2 Emz)r(i + Emz +°z)r(5‘”2‘22 = Emz +¢,)

Replacing m{ by 2 m| and mp by 2 my and after making little simplification, we have

)l+z|+z; Z z (d)zm:.,.zm!(zl)ml(zz)zm! 2m|+2mz

0 gt (d- Dmm, +2m, 2m,!2m,!

lr(lJr(l o)

1 1 |
F(E 'mz)(i +cz)m,( '*“ Z)m, r(2 ) —Z,+¢C, —. m,)
()r.,,(2 Q+rz)e OG-tz

1
2 Ny 2
1 L, 1
2

@+ DnGHy2 20t D@+ DG+ 12,
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On using the results (2.1), (2.2) and (2.3), we have

1 1
E‘f{d;c"le;cz’fzz —4x —-4x ] “(d—zl—zz—l)x

d-12¢,+12¢, (=% (1-x)’ @-1
- 3 1
2|z, +2, —d+2;¢,,—2,;¢,,—2, -4x  -4x
z, +z, —d +1;2¢, +1;2¢c,

1 1 g 1
w 2mitma(_d —d+—
( )’“'"“’(2 2)

. (1 _ X)l+z|+zz z Z % 1 1

m;=0 m,=0 22|n'+2m2'(_id)m|+mz (Ed - _i)ml"'mz

my+m;

1

oy ] 11 iy 1 1 i
2 G2, (5 + 5200, 2" G2, G + 5 20, X

1 1
22m| ! Y 22m1 (=
m[ (2)m] m2 (2)m2
o 1 3.1 1
(5)m,(5_01+521)1n| . (E)m,(gncl-'-izl)m,
@+ D GH32), A+ Do+ D +12)
17 5 m S TS %, Izm,lzzzz'lm,
1.1 1 1, 1 1
1"(-2—)1"(5 == EZZ +C, )(E)mz (—2— + 522 -C, )m2
D™ TGN+ =20, G+ o), (DT - L2, +¢y)
v R b Bl 2 2% 7

After summing up the series, finally we get the desired result (3.1). Clearly our main result (3.1) is closely related to 1.7).
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ABSTRACT
The effect of variable gravity on the thermal instabilityof Maxwellvisco-elastic ﬂuld in porous medium is investigated.
A linear stability analysis based upon normal mode analysis is used to find solution of the fluid layer confined between
twofree boundaries.It is found that in case of stationary convection, Maxwell visco-elastic fluid behaves like an ordinary
Newtonian fluid. The effects of the variable and medium permeabilityon stationary convection are investigated. The
principle of exchange of stabilities for the problem is satisfied under certain condition.

L0 INTRODUCTION

The subject of thermal instability in porous medium has been studied extensively in recent years. The problem of
convective instability of visco-elastic fluid heated from below was first studied by Green (1968). Vest and Arpaci (1969) _
have investigated the problem of overstability in a horizontal layer of a Visco-elastic fluid heated from below. The
problern of thermal convection in fluids in porous medium is of considerable importance in geophysics, soil sciences,
found water hydrology and astrophysics. The physical properties of comets, meteorites and interplanetary dust strongly
suggest the importance of porosity in astrophysical context [McDonnel (1978)]. The physics of flow through porous
medium has been given in a treatise by Scheidegger (1960). The Rayleigh instability of a thermal boundary layer in flow
in porous medium is studied by Wooding (1960). Such problem arises in oceanography, limnology and engineering. The
idealization of uniform gravity assumed in theoretical investigations, although valid for laboratory purposes, can scarcely
be justified for large-scale convection phenomena occurring in atmosphere, the ocean or mantle of the earth. It then
becomes imperative to consider gravity as variable quantity varying with distance from surface or reference point. G.K.
Pradhan et. al (1989) studied the thermal instability of a fluid layer in a variable gravitational field and found that
variable gravity has destabilizing effect on the fluid layer. In the present paper an attempt has been made to effect of
variable gravity on the thermal instability of Maxwell visco-elastic fluid in porous medium.

2.0 FORMULATION OF PROBLEM AND PERTURBATION EQUATIONS
Consider an infinite horizontal layer of Maxwellvisco- elastic fluid of thickness‘d’ bounded by planez=0andz
=d in porous medium of porosity £ and medium permeability k," The layer is heated from below such that a uniform

temperature gradient ﬂ[= liD where T is temperature. The system is acted upon by linear variable gravity force
' dz

£ (0,0,g(2)), where g(=)= 8,(1+ M=)> 0, M s gravity parameter and g, is the value ofgatz=0.
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Let p,p,T,a,pu,vand k¥ be the pressure, density, temperature and thermal coefficient of expansion, viscosity,
kinematic viscosity and thermal diffusivity of fluid respectively.
As the fluid flow through a porous medium the gross effect is represented by Darcy’s law. According to which the

usually viscous term is replaced by the resistance term _ [ H ] s in the equation of motion,where g is filter velocity of
; ¥,

fluid. The fluid velocity ¥ and filter velocity § are connected by relation j = 9.

™

The equation of motion, continuity and heat conduction for Maxwellvisco-elastic fluid through porous medium are

2142844 i)_v - L ()
s[l”a:Jd: (“’13:[ p+ pil k7
V.§g=20, +(2)
E %Zlq- GV =«xvir, . +(3)
where 4 _ i+ l@'v) stands for convection derivative.
d ot ¢
The equation of state is
p=poll-a@-1,)] -«(4)

where the suffix zero refers to values at reference level z= 0, i.e. po, T stands for density, temperature at lower boundary
z=0.

The steady state solution is § = (0,0,0),T =Ty=Pz.p=p,(1+af z),

Let dp,dp,0 denote respectively the perturbation in density, pressure and temperature.

]

Then the linearised perturbations equation of flow through porous medium, following the Boussineq approximations are,

Pafy, 2044, .3_}_ sop]- Lgo (5)
s[l+ia!]d, (l+la,[V5p+gdo] 7
V.g =20, ...(6)
E%—f= Bw+ kv, (D)
The change in density 8p caused by the perturbation in temperature 6 is given by
op = =p,ab . ...(8)
In the cartesian form equation (5) — (7) can be written as
) 1 du 1 @ v
led =g — 2 fp|m——ys +(9)
[ * 6:)[:; 6r+p“ ox p] k,u .
aY1av 1 @ v ...(10)
1 i | | s it == —y?
[”a:)[s 6I+po-6y6p:| E
a1 ow 1 @ v
l4A—||——+——3p-g,@0(+ M )|=——w> -(11)
( a:][s ot  p, Oz A ( z)] k, ¥ -
L N D (12)
dx 9oy @z
g2 Bw + kV 8 » (13)

ot
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0 0
Operating equation (9) by F and equation (10) by a; then adding and making use of equation (12), we get
x

a1 afaw) 1 :_ @° __ v aw. ...(14)
(1+15J[5_;(¥] Lo [V 62.2 J&p:’- k, oz
Now eliminating 8p from (11) and (14), we get
a1 a4, 3t a2 Vs . ...(15)
+ A—|| —— - — 1 =-—V
[] A 6!}[5 5 (V w) (sz 2 ]goaa( + Mz )] 3 w
Equations (13) can be written as
{E_‘?___sz}9=ﬂw. : ...(16)
at
3.0 DISPERSION RELATION
Analyzing the disturbances into the normal modes and assuming that the perturbed quantities are of the form
[w,t?]: [W(z),@(z)]exp (fk- x + ik y+m) , (17)

where k, k, are honzonta] wave numbers in x and y direction respectively, kz— KK yis the resultant wave number, n is
growth rate of dlsturbances
Using equation (18), equations (15) — (17) becomes

1 [d? v |d? ; ..(18
{]4-/1}?{—8—?}[;&—2—*2)””+gok209(l+ﬂfz):]=—‘;1—{?~-kl}w ( )
d? : {19
{Eﬂ—x(?~k’”9=ﬁw (19)
Expressing the coordinate (X, y, z) = (x*d, y*d, z*d), D* = d/dz* in new unit of length*d’ thereafter dropping the
superscript for simplicity and also putting *
a=kd, 5" : I is the Prandtl number, P, = k, —L_is the dimensionless medium permeability and
v K d
Av
F o= ?‘i,—-

Equations (18) — (19) with the help of equation (17) in non-dimensional form can be written as

l:g (I+Fcr) ](D} az}V go.-:r G (+ M )0’ ...(20)
[b:-a-06,p,p =-£9"yp D)

K
we consider the case where both the boundaries are free and perfect conductor of heat, while adjoining mediu\m is
assumed to be electrically non-conducting. Thus boundary conditions for this case are
W=DW=0=0atz=0andz=1. ; (22)

Eliminating ® between (20) - (21), we get
<(Q§=—a:*UE,p|ID2—a’{%+M]>W =a’R(1+M_—-.}V ¥ ‘..(23)

£

. .
where R = 8254 is the thermal Rayleigh number,
Kv
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Using the boundary conditions (22) it can be shown that all the even order derivative of W vanish at the boundary and

hence the proper solution of equation (23) characterizing lowest mode is

W = Wsin 1z, ...(24)
where W, is constant. Substituting the (24) in equation (23) and letting
a’*=n%x,R = i“io' = J—zand P==x"P:
7 z

We obtain the following dispersion relation
; io (+i0,7°F
(l+x+:a,£,p,)(l+x){[‘£--'—+——’})——]] ..(25)

rCan)

4.0 STATIONARY CONVECTION

R, =

When the instability sets in as a stationary convection, the marginal state will be characterized by ¢ = 0. On putting ¢ = 0

(o, =0) in equation (25) it reduces to g, - M(Z_“E]J‘? ...(26)
x +

Thus in the stationary convection the visco- elastic parameter F vanishes with o and thus Maxwellian Visco-elastic fluid

behaves like an ordinary Newtonian fluid. _
To study the effect of variable gravity field, rotation and medium permeability, we examine the nature of

OR, .4 R, analytically.

a
aM ar
Equation (26) yield,
6R1=_[ 2 )3(I+x)1(0, “
oM 2+ M xP

thus variable gravity has destabilizing effect on the thermal convection in porous medium. This destabilizing effect is an

agreement of the earlier work of G.K. Pradhan et. al (1989)for the Newtonian fluids.

ar, __(+x) 4 ]1<0,
ar x 2+ M JP?

thus medium permeability have destabilizing effect on the thermal convection in porous medium.

5.0 OSCILLATORY MODES AND THE ‘PRINCIPLE OF EXCHANGE OF STABILITIES’
Here we examine the possibility of oscillatory modes, if any, on the stability problem due to suspended particles, variable
gravity field and medium permeability. Multiplying the equation (23) by W* (the complex conjugate of W), integrating
over range of z and making use boundary condition (22); we get
. -1 1 1 1
[EJF@—HH(D’-ﬂi)”rdz”ff'E‘prDle+“’1wzl}”}"f?a2.f(l+m1W|zdz=o- ‘ (27
£ i o o o

Now for neutral mode, we must have o = ic; with o; is real. The real and imaginary part of equation(27)

_1_[__‘ ){;{U(D’_a’)Vlz)dz+(F—l)o-fE,p.;[( oW [ +a? |’ )dZ]-Ra’:!(1+Mz]w'|’dz=o,(28) siid

P \1+c}F?

[

; l F 1 1 1 2 2 E& 1 ! b 2 '
0'[ _E(IWEF’]JKD WL rom PR+ AP | =0 o
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Equation (29) it follow that ;=0 or o; # 0 which mean that modes may be non oscillatory or oscillatory.

The term inside the bracket is non zero if 1. #, which implies that o; =0, thus the mode are non oscillatory and

£ P,

principle of exchange of stabilities is satisfied. Thus 1 _ F is the necessary condition for the validity of principle of
e P

exchange of stabilities for Maxwellian visco-elastic fluid in porous.
CONCLUSION

The effect of linear variable gravitational field of a rotating Maxwellvisco-elastic fluid heated from below porous
medium has been investigated. From the analysis, the main conclusions are as follows:

(i) In case of stationary convection, Maxwellian visco-elastic fluid behaves like an ordinary Newtonian fluid.

(ii) The variable gravity field and medium permeabi]ity have desiabilizing effect on the system.

(iii) It is also found that modes may be non oscillatory or oscillatory.

(iv) The principle of exchange of stabilities is valid if 1 5 £,
£ Py,
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ABSTRACT
In the present paper we have obtained a theorem for Cesaro means of ultraspherical series which extend

and generalize the results of Wang [5 and 6] of Fourier series.
L. Let f (9,¢) be a function defined for the range 0 <O <7, 0 <@ <27 on a sphere S. The ultraspherical series

associated with the function is

P(’D (cosw) f(6',¢")do'
12-4"

1, ¢)~— 3 (n+A)f

7 e s[sm 6'sin?(¢ - ¢'] L

where w i§ the spherical distance between the points (9', ¢ ') ;e
cosw = cosBcos0'+sinOsin6'cos (g —¢')

and do =sinfd@'ds .
The Laplace series is a particular case of the series of (1.1) for A= whlle it reduces to the trigonometric

series in the limit as 4 —> 0, because

hm 1 p(’” (cos@)—-—cosne x21 , (12)

" The ultraspherical polynomials pf,’n(x) are defined by the following expansion.

[1-2xz+ 27 ] ZZ PP (x), ;L>0 - - i)

n=0

We suppose throughout that the function

£(8,4")[sin? 0'sin? (-¢')] (14)
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is integrable (L) over the whole surface of the unit sphere and following Kogbetliantz[2], we define the generalized mean

value of f(,4)as follows:

1 8,4)dS’
I f(O@.¢)

(@)= 2Jr_.l(sin w)’ é, [sin2 8 sin’(¢ —gﬂ]"

7 (14)

where the integral is taken along the small circle C,, where dS' in element of the arc of C,,, where centre is (9,¢) on the

sphere and where curvilinear radius is ®.

We write
_ AW A
¢(w)= [f (@) A (%+A)}(Sm w)"; +i(1%)

®,(x) = ﬁ [[(x-1)" oyar;

@ (x) = ¢(x);
g,(x) = [(p+Dx~7@ (x),p 2 0;

and

d
Oy(1) =20, (x),  1<p<0

-

We have obtained a theorem for Cesaro summability of the series (1.1) analogous to there of [zumi and Sonouchi

[1]. The object of this paper is to extend and generalize the result of Wang [5& 6] for the same series.

We prove the following:

Theorem: If x=1and

21+x

D (1) = o(t @ J_for X >a and 0<A<I1

then theseries (1.1) is summable (C,a: + 2,) at the point (B,qﬁ) to the sum A.
2. For the proof of the theorem we require the following lemmas:

Lemma:1 Let S (@) denote the n Cesaro mean of order K of the series//3/

2. (n+2)p;” (cosw) ; Q1)
" Then we have, for A >0and p20 ' '
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(
0( pEptl ),for 0<w<mk>0
d* (S, (o) i ;
S? (o) = % =2 O[WJ-FO(MJMMW ),for O<w<asr ..(22)
n,l+p-k
) ey JorO<o<a<mand A+1+[p]2k
iLemma:2 In order that the series (1.1.) be summable (C, k), it is sufficient that the integral
&
i= [¢(@)8)(0)do = o(1) (2.3)
0 5

. for0<é <mandforeach k > A

Lemma:3 For a non-integral

S=m+o, (o<o<l)

We have
[ @, @du=o,, ()8 @) [ @, 08" (dt 24)
Lemma:4If 0<u < l
n
F(n, u) =0 (n2 J+m+lum-x ) + O(n21+m+1u1.w—x-l ) ..2.5)

where

: - 1 W s m=x=lo(m)
[ F(n,u) l(m_x]_[‘ (t—u)""7'S (1) dt .(26)

i Lemmas 1, 2, 3 & 4 are due to Obrechkoff [3] and Singhai [4], respectively.
: 3. Proof of the Theorem:

If we put
x=140
and suppose for a non-integral &
o=1+0 (O<o<l),

|
|
|
|
l
| +also let us first take the case when m > 1,then



!
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m A
={2(4)*""‘ q:»p(u)(i)r' s:“I +-1)" [, (1) (1)t
pel du 0
, =1, +(-1)"1,

From Lemma 2 we observe that
s (A)=o(l)as n > » for a >q,

sincea > 6 and 6 > m,hencea > m.

Thus
I,=o0(l)asn— . . w31}
Now
L=[®,(t)s"wd
=[@, (8)8"V(a) ]- [ @, (x)S¥ () du, [by Lemma 3]
= Taq~153,
But
I,, =o(l)sincea ->m. ..(3.2)
Now,
L, = [ @, (4)S () du
= [ =
= L T IZ: = I 1tlaa,
;= a-6 a-0
S+2A+1 x+24
But we have [1]

g u i L,
?’x(l‘)=;j(1—?] ¢'(u)du=0[f a ] 63

0

If we put x=14+0




L ., W 7'_‘“\
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" Then (3.3) is equivalent to

24+x x
@5 =0|t * ..(34)
So @, (u) is integrable in the sense of Cauchy Lebesgue.
Thus by. (3.4), we get
f du 22+x_x+l e 2—"'2-6‘
= a a a
5[ @s(u) o|t ol t 35
and so.

<D'(r)=ﬂ @, (u) |du
...(3.6)
_ 1 s
“T(+9) OI“ Plu)du

| =o[t%][by 3.5

Loy = E‘Ds ()8} (u) du
' "

' N nA 1
| = [Low| o — +0[m‘m+5] du

+£:.5—(a'

- O(né'-a )+ O(nﬁ—af x+24 *21)) + O(l) + O(l'nr(Zlh\'))
n n

=a(1)asn—)ao..

- .
L= Ed’a (#)S® (u) du. - W

1
L= _L"_‘Ds (“) S&,‘”(u) du

1 1t
=[@" (@)sP) |7 - [r@ (4)S¢ V() du

=k -k,]
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Now .
2A+x 1

- (2A4+46+2)
=olu ¢ O(n )z

=o(l)asn—> .
1
n 24+x
ky=ol [u = .0m****)]du
0 i
S+24+2 1
= o(n )'0[__“*"+1 J
n a
=o(l)asn— .
1
L, = Eq)a (H)Sff)(u) du
11 '
=[@ (@)sP ) |7 - [ @ (u)S¥*P (w) du

-k,
L

24+x _b-a
1

ki=ofu « { +0(n=*4)+0(—5) } If

=o{rf") ‘m +ofrf )nziia_u_l

n

=o()asn— .

2A+x d-a+l
SAXE. o a+

L
n
kﬁ = j. O[N “ .—j;:iz:rCﬁl
i u
n

...(3.8)

.39

..-(3.10)
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S-a+l .
d—a+l 1 n
= o(n ) +o
{21+x @2 ,l} 2/1-Hr'_af_2 1
u a n a

=o(l)asn—> .
Combining (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) (3.9)and (3.10) the result is proved.

' 'When & is an integer , say O = m.

i —|:Z( l)p‘d)p(u)[ ) 2 u);| +(=1)" J}D(s (#)SS (u)du ..3.11)
=o(1)

Whenm =0
_[(D (u)S° (u)du = @, (A)S2(A) - jtb S‘(u)du ..(3.12)
=o(1) as before.

Whenx=lie. 6 =0

i= [@, (u)S) (u)du .

and

Itibo(r)dr 0[r1+;,1]

By the help of (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) (3.9) and (3.10) we have

i=o(l). .(3.13)

This completes the proof of the theorem.
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ABSTRACT

We consider a finite capacity queueing system in which the arrival of customers are in batches of size K. We take general
balk function b, and reneging with reflecting barriers at n= N. Service rate is linearly dependent on the number of customers
in the system. Provision of an additional server for longer queue is also considered.

1.0 INTRODUCTION

-

Many researchers have gone through the queueing systems with linearly dependent service rates. Abou-El-Ata, Al- -Seedy and
Kotb(1989) studied the state-dependent queue M/M/1/N with reflecting barriers and general balk function. M/M/C/N
queueing system has been discussed by Gross and Harris (1985) again without any additional concept in it. Abou-El-Ata

- (1987) developed a new approach for the moments of the single birth-death process and discrete distribution H. Abou-El-Ata

and Kotb (1992) studied a linearly dependent service rate for the queue M/M/1/N with general balk function, reflecting
barrier, reneging and an additional server for longer queues. Blackburn (1972) studied the optimal control of a single server
queue with balking and reneging. Varshney, Jain and Sharma (1988) studied a multiserver queueing system with balking and
reneging via diffusion — approximation approach for G/G/1 double ended queue with balking and finite capacity. Varshney,
Jain and Sharma (1989) gave attention on multiserver queueing system with additional server. Varshney, Jain and Sharma
(1987) studied diffusion-approximation for G/G/1 queueing system with discouragement.Dequan, Wuyi and Hongjuan
(2008) perform analysis of machine repair system with warm spares and N-policy vacation.Zhang and Tian (2003) gave
analysis on queuing system with synchronous vacation of partial servers.Ke and Wang (2007) studied machine repair
problem with two type spares and multi-server vacations. They solved the steady-state probabilities equations iteratively and
derived the steady-state probabilities in matrix form.Wang and Sivazlian [1989] considered the reliability characteristics of a

Tepairable system with m operating units, s warm spares and R repairmen. They obtain the expressions of the reliability and

the mean time to system failure. Wang and Ke (2003) extend this model to consider the balking and reneging of fa1led
units.Jain and Maheshwari (2004) extended the model of Hsieh and Wang (1995) to analyze the repairable system ' in

transient by incorporating reneging behaviour of failed unlts

Here in this paper our aim is to discuss a finite capacity queueing system in which the arrival of customers are in batch of size

~ k, with the addition of general balk function, reflecting barrier with reneging and an additional server for longer queues. The

service rate islinearly dependent on the number of customers present in the system.
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2.0 ANALYSIS AND FORMULATION

Arrival of customers in the system are batches of size k. If A, is the arrival rate of the Poisson process of batches of size k

then clearly ¢, =A, /A, where A is the composite arrival rate of all batches and is equal to zli = A. Units in the
i=l

system are served on FIFO basis, with different service rates depending on the number of customers in the system. Customers

in the system are served with rate W, if 1 <n <1 and the with |1, service rate if customers lies in 1 <n < m and beyond m

there is a facility of an additional server with service rate L i.e., l; =1, + 1 ifm<n<N.

Assuming the balk concept b, such that 0<b ,, <b, <1, 1<n<N and b, =0 if n =0 where b, = Prob. (a unit

joins the queue).

Any unit in the system rengees after certain time t, where t is the random variable with exponential distribution.

Let g(n)=a(n-1), n> 1 be the reneging function when n number of units are their in the system where g(n)=0, if n=0.

The system reflects any unit if n=N. Assume r is the probability of reflecting at n=N.

Now for M*/M/1/N queueing systems, we have the following steady state-difference equations

AP, =1,P; wheren=0

[b,A+p, +(n-1alp, = ?Lg =b.c,p.x + (1, +n0)p,., 1<n<1
[b s, + (-Dalp, = xkz';;= by, P + (s +10)p,, n=1
[b,Atp, +(n-1)alp, = kg =b,C Py + (1, +00)P,, 1<n<m
[bAtp; +(m-Da]p, = lg= b,.C, Py + 1y +ma)p,.., n=m
[b,A+u, +(n-1)a]p, = ?Lg =b,C Py + (13 + NO)P,, m<n<N-1
(s + (N2)alp,, = xgj = 1,0, Py + (s + N-10)r.p, n=N-1

[u; + (N-Da]r.p, = Xi =b,C,Prx ‘ n=N-1

k=1

-(2.1)

...(?.2)
...(2.3)
...(2.4)
...(2.5)
...(2.6)
.27

...(2.8)



D.C.Sharma / M/M/1/N queueing systems...| 181

A
Pi=—PpP0 = P=pPPo ...(2.9)
] %

'ﬁ’b. ibc

‘ forl<n<1 ...(2.10)
n-l f(b],cl,ﬁ )r p()pl
(1+81)n-1 Z (n 1) +8,
n-1
I'I ('ﬁl bi )rn-l-l-l 1 - zbici
I-1 Zf(bpc,:ﬁlss )I’+ 1 Popl
(1+68,)(1+6,),,(A+1D)+6,),,,, = -1) +38,
l<n<m L2.11)
P - g ' (I'lb) n=1+1 ibc
= : - l+ff(b,,c,,a,,52,5 )r —5 PoP:
(m+83)(1+62)m~1(1+61)1—1(83+m+1)n-m 1 i=1 (N-2+%,)
m<n<N-1 ...(2.12)
(T‘il b, )rN" L % bc;
H Ef(b,,c,,a,,sz,ts;,r)r y— g [Pobr
' ) r(m+3,), ,(1+8,),,(148,),, = (N-2+8,)
n+N .(2.13)

A /8
where p, =—, 51=ﬁ and —=r fori=1273
T A o

If the arrival rate of customers is A then the problem reduces to Abou-El-Ata and Kotb type of problem.
Now we are considering certain particular cases.

Case 1 : If the problem is with general balk function with reflecting barriers and if we consider uniform service rate p, for

every 1 <n <N then the problem reduces to the form.

ADo = Dy where n =0 (2.14)

(b A+, )p, =AY =b,C,P,y + TP, 1<n<N-1 ..(2.15)
: _ k=1 ' _. : -

WP, =AY =b,c, Dy | n=N ..(2.16)
k=1
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P, =pip, forn=0

n- il . n-1
{(E"’i)"?'+Z=fa<bk,ck)p;+(1—Z=fi(bici>p.)}po 1<n<N-1
1=l i=l
_ 1<k <i
o p—"[{'i'i‘bi’} ] Z £,(by 0, )P +— (1 Soue
r Liz: P KTk =l
n=N 1<k<i

(2.17)
i

(2.18)

Case 2 : If in the main problem if we take bn = 1 for all n that is it is without a balk function then pn converted to the

following form.

P, =pp, forn=0

=

(1+8) Ef(ck,ﬁ )i+

-l 1 -i b.c,

r + 860 8,8,)r+

1M +8,),n(1+8,)0s(148) @-1)+8,

I<n<m

Pofs

pn'=4
1-) b.c

n-1

T '. " " i
+) f.(c,,8,,8,,8)r'+ —=L—3
| r(m+8,)(1+8,),,,(8; +m+1),,... Z'(c" 102:03)1 (0-2)+8, °

m<n<N-1

PoPy

r s |PoPy
f.(c,,8,,0,,0 ,Or+—=l —L=—3,
| r(m+38;) (1485, (1+8)),., ZZ i ( 3)

n=N-1

Here in all above equations (2.19) - (2.22) 1 <k <.

3.0 CONCLUSION

-(2.19)

(2.20)

-(2.21)

(222)

Here in this paper we have found out the state dependent solution for the system with general balk function, reflecting barrier,
reneging and an additional server for longer queues. We have also determined two cases (i) when uniform service rate has

been considered, and (ii) when there is no balk function in the main problem we have taken.
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ABSTRACT

This paper deals with the study of a generalized gamma type functions involving Kummar’s
“confluent hypergeometric function. Certain properties of this new function are investigated which
include its integralrepresentations.Corresponding incomplete_generalized gamma function and its
complementary function are also defined and their properties are derived. The results presented in
this paper are of general character and results reported earlier by Saxena and
KaIIa[é],Kobayashi[5,6],AL-MusaIlam and Kalla[3] follows,as special cases.

1.0 INTRODUCTION

This present paper introduces and study a new generalization of the generalized gamma-type .

function in the form

S‘[ﬂ“’“’b;c’d;“’ﬁ : p,k]:ﬂ-* [ @, (2. Bi-pt), Ry (A, a s, dsk - Dy,
v

u,v 7

where l(Di(a,ﬁ;z) is the well knownKummer’sConfluent Hypergeoinetric Function and a new
probability density function involving generalized gamma function associated with the
function R (2)=3R2(M,a,b;c,d;k;z) which has been defined and studied by Saxena, Ram and

Naresh[1].This generallzatlon provides unification and extension of the various generalization given
earlier by Kobayashi[6,7],Al-Musallum, Kalla[4,5]and Virchenko et al.[8,9]. A probability density
function associated with the generalized gamma type function investigated in this paper,together

with several other related results in the theory of probability and statistics and also considered.
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2.0 GENERALIZED GAMA FUNCTION

The present paper deals with a generalization of the gamma—type function associated with

Kummer’s Confluent Hypergeometric Function in the form

S.(A,a,b;c,d;a,ﬁ; p,k]

i=v™ [, @, (o Bipt), Ry(Aua,bic,dsk — S, @.1)
u,v v kit

0

whereRe(u) > 0, Re(p)>0,k>0 [arg v| <mand,Rf(z)=;R,(4,a,b;¢c,d;k;z)is the generalized
hypergeometric function studied by Saxen,ChenaRam and Naresh [1].
Some special cases:

Case(i) Whenb=d,(2.1) reduces to the results given_by Saxena, Kalla Chena Ram and Naresh[3].

Case(ii) For k=1and a=/,(2.1) reduces to the generalized gamma function involving

clausenianhypergeometric series recently introduced and studied by Saxena and Kalla[2].

Case(iii) For b=d and a%ﬂ,(z.l)reduces to the generalized gamma function discussed by

Virchenko et al.[8].

Case(iv) For b=d,k=1and a =, (2.1) reduces to the generalized gamma function studied by
Al-Musallam and Kalla[4,5].

Case(v) Fora=c,b=d,p=k=1,a=fandA=me N, (2.1) reduces to the generalized gamma

function studied by Kobayashi [6,7].

Case(vi) It we seta=c,b=d,p=k=1,a=LFandA=0€ N,, (2.1) reduces to the well-known

gamma function studied by Kobayashi [6,7].
Theorem 1. S is analytic in the domain Q xQ, .

The proof is similar to the corresponding theorem for the generalized gamma function given

by Saxena and Kalla [2, pp.191-192], if we employ the asymptotic estimate [Al Musallamand Kalla

.4 2 = R
(D)3R, (Labse,dsk;z)= Azt + Az F + Az +0(z-"-‘)+0(z k l]+0{z k 1],(2.2)

which holds for large z, larg(—z] <m. Here A, A,, A, are numerical constants.

Lemma 1.The partial derivatives of S~ are:

L]

. S =v*. 'jt"" @, (a, B:- ptj(logt)"aéz (Z,a,b;c,d;k;%)dt, w(2.3)
0
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and

0" J(A+nabc,d;a, p;
S =(-1)"(1). 8§ | kD
s =y s (el o0

The proof of (2.3) and (2.4) is trivial.

Lemma 2.Let A,a,f,a,b,c,d,p € Cwith B,c,d #0,~1,-2,---; k>0 and Re(p) >0, then following

relation is valid:

S.[A,a,b;c,d;a,ﬂ;p’kJ _ %S.(Z,a,b;c,d;a +L,8+ l;p,kj
U

u,v u+l,v

AC(e)r (@) (a+ k)r(p+ k) [)L +La+k,b+kc+k,d+ k;a,ﬁ;p’k} _ (2.5

ul(a)C(B)(c + £)(d + k) u+1,v

d
Proof. If we use [1l,equation (3.23)] for E[SR:{‘(Z)] and integrate by parts, then (2.1) reduces
to (2.5).
3.0 THE GENERALIZED INCOMPLETE GAMA FUNCTIONS
For x,k >0, we introduce the generalized incomplete gamma function in the form

A,a,b;c,d; | [
so[ AR p,k]”-ﬂ. i 1@, (e Bi-pt), R [Aa,bc,dk ]dt - Gel)

7R 3

where X,k >0, Re(u) >0, Re(p)>0and [argy|<7.

The  generalized complemen'tary incomplete  gamma  function is defined

o Aa,bie,d;a, B;
S;( a,b;c.d;a,

u,v

p,k) v, I;"-' @, (@, B~ pt), R [/1 a,b;c,d;k; ]dr (3.2)

X
where X,k >0,Re(u) >0, Re(p)>0, |argv|<7..
Thus, the definitions (3.1) and (3.2) yield

S.[A,a,b;c,d;a,ﬁ;p,kJ_S.x(l ,a,b;c,d;a, 3, p,k]+S.:(ﬁ,a,b;c,d;a,ﬁ;p

= ,k),(3.3)special cases:
u,v u,v

u,v

Case(l)When b=d equations (3.1) and (3.2) reduce to the results given by Saxena Kalla, Chena Ram
and Naresh[3]

Case(ii) Fora = fand b =d,(3.1) and (3.2) reduce to the generalized incomplete 'gamma functions

developed by Virchenko et al. [9, p.98]. Case(iii)Further for b=d,a = fandk =1, (3.1) and (3.2)

reduce to the incomplete gamma functions given by Al-Musallam and Kalla [4].
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Remark. If we set a=c,b=d,a=fand p=k=1 in (3.1) and (3.2) and 4 — 0, then we find that

Aabya, b, o y
X g by Ly Ly LTy £4 L4y - - u-1_~t
Lts o[ ’ 1,1]—;’(:&,::)—6[! e'dt, C(3.9)
where }/(u,x) is the incompleté gamma function of the first kind, and
wf abiab;a,a o -
LtS ( 1,1]=I"(u,x)= _[t“ e™'dt, ...(3.5)
A—0 u,v pe

where F(u,x) is the incomplete gamma function of the second kind.

4.Probability densityfunctions:
From (2.1), we have

S.[ﬁ-,a,b;c, d:a,p; 5 k]

=y J}H_I 1@ (asﬂ;‘Pf)a R,(A.a,b;c,d;k - i)dt’(“' D
u,v v

0

wherek,A, Re(u,p) > 0, |arg v| <m.
The substitution? = ox®and df = 06 x°'dx, with p = r (y>0,0>0),
' o

m+o
U=

(m+86>0),andv=n(n>0)

transform (4.1) into the form

o x°

sa®" fom @, (@ 8-y %0 ) Ry (R by, di k- T b
0

lsasb;cad;a’!ﬂ; ;V (42)

= AS. _3k i sUs +5: 0°
n [ %H,n > ](mm{ycrm n} > 0)

By virtue of integral formula (4.2),a class of probability density functions associated with the 5
function can be defined by

[ m, . e
o8 xm ,fD,(a,ﬁ;—yxs)JRz{l,a,b;c,d;k; il ]
n

F(x):=+ | babic.dia,p; (x> 0), ...(4.3)
) ns m ey
§+l,n o

| 0, elsewhere

provided that the various parameters and variable x occurring in equation (4.3) are so constrained

that the density function is always non-negative. It is evident that

L]

mj Flx)dx=1.




Chena Ram and Naresh / Some Results Assocfaled...|. 188

We note that the behaviour of f(x) at zero depends on m+38.

» =1
| A,a,byc.d;a, B .
f(0) =8c"°n"? {S[ . 1/05 na s %’kJ} (m+3=1)

f(0) =0 (m+8>1)

f(x) >oasx >0+whenm+d<1, ... (4.4)

lim £ (x)=0 (5 > 0), ..(4.5)
It can be seen that

, m+6-1 3 @8 mrae)

f(x):[ s -yax“'-%x‘“w) f(x), ...(4.6)
Where, for convenience,
s o x°
R\ A+La+kb+kie+k,d+kk—
_AT(e)T@r@+kr(b+k) n -
T Fc+k)T(d+k s o
@r®IE+KT(d+k) 3 Rz[ﬁ,a,b;c, kT )
n

the formula (4.6) can be derived, if we differentiate both the sides of equation (4.3) with fespect to
x logarithmically and apply the following formula

i ‘R /'La‘b‘c d'k—ax5 =-O'5;~ F(C)l"(d)I"(a+k)1"(b+k) xl;—l
K e § s, Uslyld, " 3 p r(a)r(b)r'(c+k)r(d+k)

(4.8)

Ll
3R2(/1+1,a+k,b+k;c+k,d+k;k;-— g% ]
n

Particular cases:

Case(i) Note that forb =d and a = [3, the results of this section reduce to Virchenko et al.[9].

Case(ii) If we set b=d equation (4.8),reduce to results given by Saxena,Kalla,ChenaRam and
Naresh[3].
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5.0 SOME STATISTICAL FUNCTIONS

In this section, several basic statistical functions associated with the probability density function
f(x), defined by equation (4.3), will be evaluated.

5.1 The " moment

The r’;’moment,ulabout the origin of a continuous real random variable X with the probability
density function f(x) is given by

ulo= Ix'f(x)dxz:E[X’] (re N), .(5.1)
which on using equation (4.2) and definition(4.3) gives
., (Aabcd:a,p; Labedapf; N
H=c %5 | mer 7 k|is m Lk ..(5.2)
+l,n o -3—+1,n o

In particular, for r=1,the expected value of the random variable X(also referred to as the mean or the first moment
of X) is obtained as

# i Aabie,d:a,pB;
EG)= [x f(x)dx=0758"|  m+1 2k
—0 o

—+Ln

=1

Aa,b;c.d;a, ;.

x9S m
—+1,n
)

Z,k #.(5.3)
o
5.2 The moment generating function:
The moment generating function- M(#;5)of a continuous random variable X having the

probability density function f(x) is defined by

M(5:6 )= Efe’* = mje” Fx)

-

ox’®

6" wa_leu1‘1)1(“’/8;“?’xa):Rz(&a,b;c,d;k;- ) dx
0
= (5.4)
z’o,a,b;c,d;a,ﬁ;.y .

E+1n
6 s ag

n*S k

which itself is a generalization of a result given by Saxena,Kalla,Chena Ram and Naresh[3].

If we setax = 3,b=d and k=1 (5.4) reduces to the moment generating function studied by Kalla et al.[10].
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5.3 The Hazard rate function:

For a continuous random variable X having the probability density function f(x), the commulative
distribution function F(t) is given by

[ .
Fe):= _[f(x)dx=inob{X€(—°°,f)}, ..(5.5)
that is, by
Aa,bic,d;a, B; Aabic,d;a, B; -
Fle)=57" m Lk|is|  m Lrlb, .(5.6)
E+l,n o : —54'1,” o

&
where S g' is the generalized incomplete gamma function defined by Virchenko et al.[9,p.98].By
virtue of the result given by Virchenko et al.[9],we can express (5.6) in terms of generalized

-]
complementary incomplete gamma function S o0 28

-1

o babiediaf; 4.a,b;c,d;a, B;
F)=1-8 24_1’" ;_—,k S E+l,n ;,k , ..(5.7)
5 ' 3
thus the survivor function S(t) becomes
A.a,b;e,d;a, B; y Aa.bie,d;a, B, y B
SO=s3 m, SRS ma. Sk (5.8)
)
and the Hazard rate function h(x),defined by (5.5), can be expressed as |
LT s
e r”*‘s",d)l(a,ﬁ;—yx“) 3R2(ﬁ,a,b;c,d;k;—ax )
h(t) = — n_ (t0) ..(5.9)
Y Aa,bie,d;a, B; y '
nlS‘a;‘ m —,k
§+1,n o

5.6 The mean residual life (or remaining life expectancy) function:

For a continuous random variable X, the mean residual life (or remaining life expectancy) function

K(t) is given by

K(t)=EX -{X 21]= S—zjqi(x —1)f(x)dx, (5.10)

_—.S_t.j;[xf(x)cﬁc-—t, | . 51D

since S(t)denotes the survivor (or reliability) function denoted 'by equation (5.8).

L
o
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By virtue of the definition (4.3), if we usethe substitutionz=0 x’and dz=0 6 x%'dx,

theequation(5.11) reduces as

© i ” A a,b c,d;a,ﬂ; . Z,a,b;c,d;a,ﬂ;
_[xf(x)dt=cr 5stes| m+l Y klis m Zk|} ...(5.13)
—+Ln o —+Ln o
1 - 5
so that
I’ A,a,b;e,d;a, B, J A,a,bie,d;a, B; B
K=o /JS‘:fs m+1 i,k S m ~—,k -t. ..(5.14)
—— 1 o —-+1,n o
) )
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ABSTRACT
Inflationary cosmological model with varying A- term is investigated in Kantowski-Sachs space-time. To obtain a

determinate solution, it is assumed that the scalar of expansion & is proportional to the shear scalar ¢, which leads to a

relation between metric potentials 4 =kB 2. A detail stlidy of physical and geometrical parameters is also discussed. The

results of the model are consistent within the observational limit.

Keywords Inflationary cosmological model. Kantowski-Sachs space-time. Time dependent A-term.
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1.0 INTRODUCTION

The inflation will occur by using the concept of Higg’s field ¢ with potential (@) if potential has flat region and the scalar

tield ¢- evolves slowly but the universe expands in an exponential way due to matterless scalar field [18]. In general
relativity, scalar fields help in explaining the creation f matter in cosmological theories and can also describe the uncharged
field Scalar field is minimally coupled to the gravitational field. In particular, self interacting scalar fields play a very vital
role in the study of inflationary cosmological model. Several versions of the inflationary. models are studied by Guth [4],
Linde [10], Abbott and Wise [1], Mataresse and Luechin [11] and La and Steinhardt [8]. Bali and Jain [2] have presented
Bianchi type-I inflationary universe in general relativity. Inﬂéiionary cosmological models in four and five dimensions in
general relativity have been studied by Reddy et al. [15] and Reddy and Naidu [14].

The cosmological term-A providés a repulsive force oppoging the gravitational pull between the 'galaxies. Lfnde [9] has
suggested that A is a function of temperature and is related to the spontaneous symmetry breaking process, and therefore it
could be a function of time. The existence of the cosmological term-A is favourable to recent supernovae (SNe) Ia

observations [7, 17] and which is also consistent with the recent anisotropy measurements of the cosmic microwave
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background (CMB) made by WMAP experiment [3]. Pradhan and Otarod [12, 13] have obtained the solution of Einstein’s
field equations with time dependent deceleration parameter and A-term in presence of perfect and bulk viscous fluid.

Jain et al. [S] have presented Bianchi type-I cosmological model with a varying A-term in self creation theory. Recently the
inflationary Kantowski-Sachs cosmological model in general relativity is investigated by Katore and Rane [6]. Reddy et al.
[16] have studied about plane symmetric Bianchi type-I inflationary universe in general relativity. Motivated by these above
arguments, in this paper, Kantowski-Sachs inflationary cosmological model in presence of cosmological term-A s
investigated.

This paper is organized as follows: The metric and field equations are considered in Sect.2. Solutions of field equations are
obtained in Sect.3. Some important physical and geometrical features of the model are discussed in Sect.4. In last Sect.5,
conclusions are given. -

2.0 THE METRIC AND FIELD EQUATIONS

We consider the Kantowski-Sachs metric in the form
ds® =dt’ — A*dr* - B? (d92+sin26’d¢2) weikd)
Where the metric potentials A4 and B are functions of cosmic time Z only.

In the case of gravity minimally coupled to a scalar field V(¢ ) (18), the Lagrangian L is

L= [J=8(R-2g"6..6., -V () d'x ;)

Which on variation of L , with respect to dynamical fields, leads to Einstein field equations

G/ =-T +A() g/ ..3)

o o
Where G/ =R/ —— Rg/ is an Einstein’s tensor and the contracted tensor 7’ is trace of the enerey momentum tensor that
1 1 2 I g)’

describes all non-gravitational and non- scalar field matter and energy.

The energy momentum tensor has the from

. 1 .
T/ =¢,, ¢’ —[-2-135,;: ¢ + V(g (@)

and

1 ) av(g) '
—=0,,({—g0'¢)=-—"="=
N (J—g0'9) é Q)

Where'comma (,) and semicolon (;) indicate ordinary and covariant differentiation respectively. The function ¢ depends on
! only due to homogeneity. Other symbols have their isual rheaning and units are taken such that
872G =c =1 ...(6)
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By adoption of co-moving coordinates the field equations (3) for the line element (1) can be written as

2%+g—‘z+L [ ¢4 +V ()] +A(r) ik T)

iy By Aﬁ Ef'[ 82 +V(@)] +A() ®)

L R ORIN0 -6
" and the scalar field is

bu+ o (Zer22t) ¢ LD =0 10)

Here the suffix 4 indicates ordinary differentiation with respect to cosmic time ¢ only.
3.0 SOLUTIONS OF THE FIELD EQUATIONS

Stein-Schabes [18] has shown that the scalar field ¢ will take sufficient time to cross the flat region so that the universe
expands sufficiently to become homogeneous and isotropic on the scale of the order of the horizon size. Thus, we are
interested here, in inflationary solutions of the field equations (7)-(10).
The flat region is considered where potential is constant i.e.

V(@) = constant =V, (say) ...
since the field equations are highly non-linear, here, we also assume the relation between potentials, i.e.

A = kB? s {12)
Where & is constant.
From equations (7), (8) and (12), we have

2BB,, - B! =1 - ..(13)
Let us use the transformation
, d
B,=f(B) ~By,=f", f' = f .. (14)
Equation (13) leads to
f= _d_Bi [k,B-1]" (15)
Equation (15) yields
B = (at+b)’ . | ...(16)
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where

Equation (12) leads to

A=k(at+b)* (17
Therefore, the metric (1) reduces to the form
ds* =dt* —k* (at+b)* dr’ —(at+b)" (d6* +sin’ dg*) ..(18)

After suitable transformation of coordinates, metric (18) reduces into the form

ds? =—12-de —k*Tdr®-T* (d6* + sin* 8d¢*) ...(19)
a

Which represents Kantowski-Sachs inflationary cosmological model with varying A- term in general relativity.
Using equations (11) and (12) in equation (10), we get

B
Bia + 4;‘?’ =0 .20
Which on integration gives
k
$=k—% 21)
Where 4
k
ky ==
5= =,

4.0 SOME PHYSICAL AND GEOMETRICAL FEATURES

After using equations (16), (17) and (21) in (9), the time dependent cosmological term A is given by
200 1 K
T e

+V, (22)

The scalar of expansion & calculated for the flow vector v'is given by

8k
Piwe 28
T (23)
The Hubble parameter / is given by
H ____8a ) ' _ , ...(24)

3T
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V=R'=kT? ...(25)

Where R is a average scale factor.

The expansion velocity is given by

R, 8; ol ...(26)

For the model (19) deceleration parameter is calculated as

g= -—§ ..(27)

For the model (19), the particle horizon exist because

dt f dt
o R(¥) 0 km(a! + b)‘”3
_ 3 -5/3 1T
=——[(at+b)""]; ...(28)
5a ’

is a convergent integral.
In the model we observe that the spatial volume V' is zeroat T =0or t = -b/q = I, and scalar expansion @ is infinite
at initial singularity ¢ = ¢, which shows that the universe starts evolving with zero volume and infinite rate of expansion at

t=1,. As T increases, the spatial volume ¥ increases but the scalar expansion decreases. Thus, the expansion rate

decreases as time increases. As ' —> oo the spatial volume ¥ becomes infinitely large.
Clearly T — 0 gives A> wand T —» o gives A—> Vy . The cosmological term-A has constant value with in the range 0 <
T < . The value of cosmological constant A is in an excellent agreement with observations [7, 17] of type Ia Supernovae

(SNe). The main conclusion of these observations is that the expansion of the universe is accelerating and the cosmological

term was very large at initial times which relaxes to a genuine cosmological constant with due course of time.

Scalar field ¢ is constant when 7' — oo. The expansion velocity R, diverges as T —> 0, hence the expansion of the

universe is infinite as we approach towards — .
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5.0 CONCLUDING REMARKS

In this paper, Kantowski-Sachs inflationary cosmological model with varying A- term in general relativity is investigated.
Equation (19) shows that the model ‘will represent an expanding universe. The anisotropic expansion of the universe with
time is evident from the model. The value of cosmological constant A is in an excellent agreement with observations [7, 17]
of type la Supernovae (SNe). The main conclusion of these observations is that the expansion of the universe is accelerating
and the cosmologlcal term was very large at initial times which relaxes to a genuine cosmological constant with due course of

time. The model obtained in this paper is of considerable interest and may be useful in general theory of relativity.
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