fr

GANITA SANDESH

A Half Yearly
International Research Journal

of
Rajasthan Ganita Parishad

Registered Head Office
Department of Mathematics
Government College, AJMER - 305 001 (India)

Website : www.‘rgp.co.in E-mail :'rgp@rgp.co.in

~ -

Volume 25, No. 1 (June 2011) ISSN 0970-9169 ||



GANITA SANDESH
forg g9

Editorial Board I

Azad, K K., Allahabad Joshi, C.M., Udaipur Radhakrishan,L., Bangalore
Banerjee, P.K,, Jodhpur Maithili Sharan, New Delhi Raj Bali, Jaipur
Bushman, R.G., US.A. Mathai, A.M., Canada Rajvanshi,5.C., Patiala
Denis, R.Y., Gorakhpur Mukherjee, HK., Shilong Saigo,M., Japan
Gupta, C.B., Pilani Nagar, Atulya, UK. Saxana, R.K., Jodhpur
Gupta, Manjul, Kanpur Pareek, C.M., Kuwait Srivastava, HM., Canada
Jain, K.C., Jaipur Pathan, M.A., Aligarh Tikekar, Ramesh, Pune
Jain, Rashmi, Jaipur J Verma, GR,, US.A.

Editor Editorial Secretary

Dr. V.G. Gupta Dr. Anil Gokhroo

University of Ra;asthan, JAIPUR (INDIA) Government College, AIMER (INDIA)

1. The editors will be glad to receive contributions from the members of the Parishad only from all
parts of India / abroad in any area of Mathematics (Research / Teaching etc.).
In case of joint authorship, each author has to be a member of the Parishad.

2. Manuscripts for publication should be sent through E-Mail : rgp@rgp.co.in or hard copy in
Triplicate duly computerised with double spacing. -

3. Unduly long papers and papers with many diagrams/tables will not be ordinarily accepted. In
general, length of the accepted paper should not exceed 10 printed pages.

4. Authors should provide abstract and identify 4 to 5 key words for subject classification.

5. The contributors are required to meet the partial cost of publication at the rate of T 200/- or equivalent
US$ per printed page size A4 (even number of pages) payable in advance on receipt of acceptance
of their paper.

6. On receiving intimation of acceptance of the paper, the authors shall immediately supply the
paper on a floppy diskette / CD, preferably in Adobe Pagemaker 6.5, with text in Times New
Roman font 11 pts. and Mathematical symbols (Math Type, Equation editor or Corel Equation).

7. 25 reprints will be supplied to the sole / first author free of charge. Additional reprints may be
ordered at cost. '

U Admission Fee First Time Only 100 100 (or equivalent)
O Life Membership 2,000 2,000 (or equivalent)
O Annual Membership fee for Teachers  Financial year 250 250 (or equivalent)
(Colleges / Universities), T.R.F.
- Registered Research Scholars .
O Educational / Research Institutions [Calendar year 500 500 (or equivalent)

Period In India (X) Outside India (US §)

————

# Back volumes are available at a price equal to double of the current annual subscription.

# All payments must be made by Bank D.D. in favour of Rajasthan Ganita Parishad payable
at AJMER or online State Bank of India Account No. 10200807636, under intimation to
the treasurer, Rajasthan Ganita Parishad, Deptt. of Maths, Govt. College, AIMER-305001

\

)

o R

]

.

5
I S ——



Ganita Sandesh Vol. 25 No. 1, (June, 2011 ) pp.1-12 ISSN : 0970-9169
© Rajasthan Ganita Parishad, 2011
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ABSTRACT

On account bf the importance of pathway model introduced by Mathai [4] in statistical distributions, the
authors are motivated to derive the fractional integration of the multi variable H-function via pathway operator.
The results are of generalized nature and some known and unknown results are deduced, as special cases.

Mathematics Subject Classification :- 33C60, 26A33.

Key words and Phrases :- Multivariable H-function , Pathway model, probability density function, fractional

integrals.

1. INTRODUCTION

Fractional integration operators play an important role in the solution of several problems of diversified fields
of science and engineering. Many fractional integral operators like Riemann-Liouville » Weyl, Kober, Erdély-
Koberand Saigo operators are studied by various workers due to their applications in the solution of integral
equations arising in several problem of many areas of physical, engineering & Technological sciences, such as
reaction, diffusion reactun-diffusion, Viscoelasticity, Rheology etc. A detailed description of these operators can
be found in the survey paper by Srivastava and Saxena [22]. '

Let f(x)eL(a,b),a € C ,R(a)>0, then left sided Riemann-Liouville fractional integral operator is
defined as

(fg+ f) (x) = F(Ia) z(x—‘)a_I f(e)de - ' <A1

where R(a)>0.

DEFINITION 1 Let f (x) eL(a,b),n7 € C ,R(7)>0,a>0 and let us take a “pathway parameter”
O < 1. Then the pathway fractional integration operator is defined by Nair [9] as
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WDl ag-a) T
[1 - ——-—-——-—] f(t)dt (1.2)

(Pé’i’“) f) (x)=x" I

(1] X

For further details of pathway model and its applications one can refer to paper by Mathai and Haubold
[3, 6]. For Rt(a) > 0, the pathway model for scalar random variables is represented by the following probability

density function (p.d.f)

- |
f(x)=c|xf[1-a(i-a)5|’ ] (13)

~ow<x<oo &>0 20, I—a(l—a)lxl5>_0, y>0,

where c is the normalizing constant and a is the pathway parameter. For real a, the normalizing constant is as
follows:

£
-5 s[a(l-a)]s F[;—-f lfa +l] o <l (14)
"2 r B ’ ' ;
F[JJF[l_a+l]
4
e B
ola(a-1)]s F[—~]
=%[ b e Jor 2—-L50,a 51, (15)
gl &-g
é a-1 &
o
g J(aﬂ) fora—>1. ...(1.6)

It may be observed that for 00 < 1 , it is a finite range density with 1-a (1-a) |J|c|'s >0 and (1.3)
remains in the extended generalized type-1 beta family. The pathway density in (1.3), for & <1, includes the
extended type-1 beta density, the triangular density, the uniform density and many other p.d.f. -

When o > 1 , we write 1 —a =—(a —1) , then

(L)

_a(: -l] .

[p((;f;“] f) (¥)=x"] [13_(%1‘1‘-}_@:(:) dt
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__B
f(x)=c|x|7-1'[l+a(a-l) |x|5:| -l . (18)

- <X < o, 8 >0, B20, a >1,

which is the extended generalized type-2 beta model for real x. It includes the type-2 beta density, the F density,
the student-t density, the Cauchy density.

Here we consider the case of pathway parameter for ot < 1. For o0 — 1 both (1.3) and (1.8) take the
exponential form, since

| B _.
Jime x| [1-aG-a)* 1™ = melx[1+a(a-n° =

=c|x|" " e i . (19)

s
- - i
_aq a)f) R e

when @ — 1, (1
x

» then operator (1.2) reduces to

| (n,1) w =27y an
| (P0+ f)(x)=x’jr (I] e ¥ fmd=x"L;| ... (1.10)

it J*

a
that is, it reduces to the Laplace integral transform of f with parameter, 'Y’,“

Le (x) = I et £(t) dt.

When a=0,a=1 and 5 is replaced by 5 1 in (1.2), it yields
1 7 n-1
(I £)(x) = —— x—t f(t)dt
' r(n) J; e=t] ) . (L11)

which is the left-sided Riemann-Liouville fractional integral discussed in the monograph by Samko et al [14]

In a recent paper integration of Aleph function by means of pathway model is demonstrated by Saxena et
al [15]. In this paper we will integrate the multivariable H-function by means of pathway model.
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The multivariable H-function is defined and studied by Srivastava & Panda [20 , p 271, Eq. (4.1)] in term
of a multiple Mellin-Bernes type contour integral as

O,n:ml,nl;.. ;M0

B[ Z4ymnBy] = P-q:Py,Gp -5 Ppody
% (1) M) (.0 O (L@ @ -
R S S o He.rt . PN P, &
. [31 j j Jl,p("J 1 )l,pl 5 'TJ }l’pr
s k1) () (4 5O o (q4® 5O
z'r [bj ’Bj ""’B.i ]l’q'[dj ,5}.\ )hql""’(dj ’aj ]],qr
1 - : Sl .. |
= e vE,....6) 1 I1 ¢. (&) Z 2.0 A€ i
Cro)f ILI ILr E"l r { jop 1o }dE"l r (1.12)
where (0-—-\/—_1
Mri-a+y 4"‘):
j=1 Ji=1] '
W(s’l.---.fr)= . : (1.13)
o r[ :(‘)csj nr[1 b4y pO ]
Z ﬂ é.
j=n+l i=1 je1 i1
( (1) 5(1)5) l_'(l e\ (1)¢'J |
I—1 ji=1 J : '
¢.) = . . (i=1,...,r) ..(1.14)
oD _, ) f @), 50)
P . r1-d\W+ 6% e
]1;1-[+l ( f:'I)|=1x:1[i+l [ I N ! ‘fl)

For a detailed definition and convergepce conditions of the multivariable H-function, the reader is
referred to the original paper by Srivastava and Panda [20] (also see Mathai et al [8] and Srivastava et al [17, 21]).

From Srivastava and Panda [21, p. 131], we have
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H[Z,,...,Z,]-"-—'O(|zl|el...|zr|er ) [l<15r"z ||—>0) .(1.15)

where

min |Re(d®
ef"—' . % (f=l,..,,r),
1<js<m| &
For n=p =q=0 the multivariable H-function breaks up into product of ‘»’ H-functions and
consequently there holds the following result (See Mathai et al [8]) :

z

1 ;
(cj(l) ’ij)l ; o ;(cj(r) ’Yj(r))l :
00:m,,n;...,m_,n g s P ,
H > 1’1 r’r 1

r
0,0:py,0y5 s Ppsly | [dj(l),aj(l)] ;"';(dj(r)’ﬁj(r))
1 q lyq
z 1 r
L %r -
(. (i)) ]
. . _("j . My .
= H._' !z .. (1.16)
_ [d.(l) 5.(1))
i 3173 g

where H?;" (-) is the familiar H-function [3,7,8,17].

A general class of multivariable polynomials of real or complex variables X;, . . . , X, is defined and
studied by Srivastava and Garg [18] in the following form

h,...hs hk+... +hgkg <L | K xsk,
ST ()= Y (—L)h1kI+_'_+hsksA(L;kl,..;,k,)%—l... .
Ky, ke =0 ! !

where L\hl,.. ,h, e Ny ={0,1, - - - } and the coefficients A(L; k,,...,k,) (k; € N, ;.'j'=1 ... ,8) are

arbitrary constants real or complex. Evidently the case s = 1 of the above polynomials would correspond to the
polynomlals (see Srivastava [16])

[1/h] (_ :
S (x )‘ Z( k)hk Alk .. (L18)
=0 !
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The coefficients A, (I,k € N,) are arbitrary constants real or complex.

2. MAIN RESULT
Theorem 2.1. Let 77,0 € C ,fngﬂ) >0, 9%(-1+£;J> 0, m(p+yi ei) >0 (i=L...,r)
and @ <1, b €R. Then for the pathway fractional operator H,(: o the following formula holds:

x”*Pr(u-H’L-)
1-a -

(P(” @) p PHiz, .2 c‘"r}] "
f [a(l—a)] P

| [ 3 ]pl m (v W, @ ® .0 1

g a(l-a) (‘-P‘.}H """" "I’)'[.j;;j lﬂu‘j )]'p:[oj 'Tj )l.l’l ‘_"i(ﬂj -7j )l P,
0,n+;:ml.nl;...,mr,nf ’ : :
P+La+1:p.ap .- Pq,

n 0
zr[n(l’i:::)]“r [-p-& R "') [b p.i(l) """ ’i(r?] (d.lm ,(l)) [dJ() 8," ]l %,
.. (2.1)

where €; is defined in (1.15)

. Proof ;- Using equation (1.2) and (1.12), it follows that

X
ﬂ'(l-ﬂf)tﬁw1 [l_a(l-a)t

n
l-adt.__l___ .
e e e

r

I =x"]|
0

r wél
T 0, @) 1T dey..... de,
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x
a(l-a) i
p-1 1-a)t]i_ 1
0 x (27 ) L L,
r £l &
{:El 0 &) Z,.'} * g, dg,
where k = Z u &,
1=1
— N 1 4 i
= X J.... Jw(, .4"){1’14'-(6)2}4«,‘, ,d¢
r 1 o Pl Bt M 1 ¥
(27 ) Ll Lr i=1
x
a(l-a) n
f tp+k-1 [1_M|l—a di
0 x
Put 8d-a)t = ¥, interchange the order of intcgration and cvaluate the inner integral by means of beta
X
function formula, it gives

l-a

x”.+'°1“[l+-q—] )
[aa-2))  (270)" 1{,

r 3
----LIw(ﬁl.-...fr){il;ll¢,.(§,-)Zf’}dé,.-.—.dér

r

" [ " ]“ I (p+k) 22
a(l=a) r(l+li+p+k)

-a
On interpreting the above result by mean of (1.12), we obtain the desired result @.1).

It is interesting to observe that for & =0, a=1, Theorem 2 reduces to the result given by Gupta et al
[2].
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Note 2.1. We note that the fractional integration of multivariable H-function has been discussed carlier, among

others, by Saigo and Saxena [10-12], Saigo et al [13], Srivastava et al [19], Srivastava and Panda [20,21] , Gupta
et al [2] and others.

If weset n=p=¢=0 then by virtue of the identity (1.16), we obtain

Corollary 2.1 If 77,p € G ,m(ﬁ) >0, m[l+%)> 0, 91(p+yiéi) >0,

(i=1,...7),a <1,beR, then there holds the result

4 - ) . _
(c'(l) ’7'(1))1
P(‘q,a) tp—-] Il[ Hmi’ni , tu'i J J » B
0+ 2l p;,q |1 ' .
(d @ 5(1))
i ) )1, q.
\ i J J ,ql_)
: M@ @)
L > A ) ) . o
xp+“1‘(1+-1ij O, L " (I-pin, H) (cJ 1; )l’Pl
= —a H 1°71 o r [ X ]
[a(l-a)] e l’l:pl’ql‘.’"'.’pr’qr Ta(l-a) i

V. I qa @ 50)
(p ]_a,pl ,,,,, pr), '(dl *8] )I’ql

.(2.3)

If we further take T =1, we arrive at the result given by Nair [9, p. 242]

In order to obtain the Laplace transform of H-function of several variables , we evaluate the expression
x}m—’7 I'(p+k) 1"(1+ n J

l-o

gt [af(l—«:t)]p-Hrt F[p+k+l+lij

-

Iim

which can be seen from (2.2). Expanding the gammg function by Stirling formula for gamma function , namely

F(I—Z) — (27:)1/2 (Z)1+Z_U2 e-Z ,

the above expression becomes
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'*T:"E'”z
xP Cep+k) (ﬁ - lim x” T (p+k)

lim

a1 , TL+ptk1 - 1/2 a-l - ok LP”‘
[aa-a))”** [&J [aa a)]_’” [1-—a)

_ xPT(p+k)
- +k
[an)®
Now using the limit formula (1.9) we arrive at
Corollary 2.2 If R(p+y,¢) >0, R [ﬂ] >0, (i=1,...,r), then there holds the formula
x

By H H
X " ¢P lH[Zl-tl,...,Zrt r]dt

o
fe
0

L[ , L) () M M ® ,®

. zl[a‘rl] (1'P,I-51;uulvlr)'(ﬂj»ﬁj r---:j ]l‘p:(cj ,"fj ]]‘pl;.”;[,cj ’Tj )I‘Pr

- xl'—"""'l O,n41:my, Ry, MR, | .
(a;; I’+1cq+1i91-ll]; wery Prsqr

an

2, [ * } b (o meon, ) ["j a1 en rl)l, (4P40), f"“[dﬁm ’sjm]" % |

e (28

By following a similar procedure, it is not difficult to establish

TheoremS.l.lLet ry,peC,?%(,B)>0,9f’{'[l+T_%]>0, iR(phul. ei)>0 (i=1...,r)

and @ <1, bER. Then for the pathway fractional integral R)(f ) , fractional integral of the product of

hy,....hs
multivariable H-function and SLl (+) exists and there holds formula :
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hy.....h
[P((;i’a) [1”“’1 S (ylt’ll, Lyt H (th”l - ¢ )] ]

xﬂ+pr(l+ﬁ%] hyky+...+hgks SL

k, k
_ ; y Yo & Ak totAgky
= 3 Dby b Kk, o)l Lo o
[a(l—a)]"o kysoookg=0 ar s k! k!

x 1" : 1 n @
0,n+|:m1,nl;....mr,nr E
P+LA+Lip; 05 -y PG,

‘ 1 AP S P (1) (N (g sm) . [0 ;@
=l (o Bk} (0 (a4 )l,ql""‘["j"‘j La,

where Spi™ (-)is defined in (1.17) and ©; is defined in (1.15).

When 'n=p=¢g=0 then by virtue of the identity (1.16), we obtain
n
Corollary3.1 If 7,p€C ,m(ﬂ) >0, ﬂi(l+§)> 0, ER(p+piej) >0,

(i=1,...r),a <1,beR, then there holds the following result :
@ (i)) ]
(cj "YJ 1 S Pl

- hy,..., A r m;,n; M.
P(q ’a) tP l SLl (ylt 1' e, yst’ll\) H H 1 z. t 1
1=1 . .

(d ® '5_(1))

0+ pi!qi 1

<1 J

k) ks
- AL:k,, ... k)4 Yo (Akrerhk
( L)hlkt*""*h-ks (L;k,, ) o ¥

-

3.1)
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i 3 : ; _|
| [l—p—izlli ki3 Myses o u,] o™ Y
im0y MmN z X Hi
LLp;.q;5-3Ppeq, | Y a(l-o)
| P 5 ORI
( P l—a E","‘iauls---sur]'(dj ;BJ )l,qi

L -

..(3.2)

which holds under the same conditions as given in (3.1)

Remark 9 The condition of convergence, as given by Nair [9, p:2 12], are erroneous. The

_ _ "
condition Re (p) should be corrected to Re (p)+ m.ln Re| L | >0.
1<j<m ﬂj-

CONCLUSION

On account of the most general character of the H-function of several variables appearing in Theorem 2.1 and
Theorem 3.1 numerous other special cases associated with potentially useful higher transcendental functions like
Kampé de Férict function, Lauricella function of several variables, H-function of two variables etc. can be
deduced but for the sake of brevity, they are not presented. Further due to presence of the pathway parameter a,
the results of this paper may find some applications in statistical distributions.
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ABSTRACT

In this note we shall prove common fixed point of four self maps in a fuzzy metric space in the setting of
R-weak commutativity. Our results generalize the results of Singh, Jain and Jain [10]. f

Mathematics Subject Classification: 54A35, 54A40, 54H25.
Keywords: - Fuzzy metric space; R-weakly commuting maps; fixed point.
INTRODUCTION

Fuzzy set was defined by Zadeh [13] in 1965. Kramosil and Michalek [5] introduced fuzzy metric space,
George and Veeramani [3] modified the concept of fuzzy metric spaces with the help of continuous t-norms. They
also showed that every metric space induces a fuzzy ‘metric. Vasuki [12] proved fixed point theorems for R-
weakly commuting mappings. Cho, Sharma and Sahu [1] introduced the concept of semi compatibility of maps in
d-complete metric spaces Singh and Chouhan [8] prove the existence of a unique common fixed point of four self
maps A, B, S and T in a fuzzy metric space taking two of the maps S and T to be continuous and assuming pairs
(A, S) and (B, T) to be compatible.

Singh, Jain'and Jain [10] prove the existénce of a unique common fixed point of four self maps A,B, S
and T in a fuzzy metric space taking one of the four maps to be continuous and assuming pairs (A,S) and (B,T) to

be semi compétible.
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Here we prove a similar theorem on existence of unique common fixed point of the four maps in a fuzzy
metric space in which we drop the assumption of continuity and take R-weak commutativiiy in place of semi

compatibility.
PRELIMINARIES
Definition 1: [13] A fuzzy set A in X is a function with domain X and values in [0, 1]

Definition 2:[11] A binary operation *: [0, 1] x [0, 1] — [0, 1] is continuous t- norm if {[0, 1], *} is an abelian
topological monoid with unit 1 suchthata*b < ¢ *d whenever a<c and b < d, a,b,c,d, € [0, 1].

Examples of t- norm are a * b =ab and a* b =min {a, b}.

Definition 3: [5] the triplet LM, *) is a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, M is
a fuzzy set in X2 x [0, ) saa; y'ng the following conditions;

(H My 0=0.
(ii) Mx, y, t)=1 Vt>0ifand0nlyifx=y.
(i)  M(x,y, t) = M(y, x, t).
(iv) M(x,y,t)*M(y, 2 s) SM(x,2,t+s) V x,y,z€ Xandt,s,>0.
v) M(x, y, .) : [0, ©) — [0, 1] is left continuous.
vi) limoMEy,t)=1V x,y,€ X

Definition 4: [S] A sequence {x,} in a fuzzy metric space (X, M, *) is called Cauchy if limy—.o M (Xpep, Xy, t) = 1
for every t> 0 and each p> 0.

Definition 5: [5] A sequence {x,} in a fuzzy metric space (X, M, *) is said to be convergent to x € X if limy_., M
(Xn, X, ) =1, foreach t > 0.

Definition 6: [S] A fuzzy metric space (X, M, *) is said to be complete if every Cauchy sequence in X converges
in X. :

Definition 7: [6] Two mappings f and g of a fuzzy metric space (X, M, ¥*) into itself are said to be weakly
commuting if M (fgx, gfx, t) > M (fx, gx, t) for every x € X.

Definition 8: [12] The mappings f and g of a fuzzy metric space (X, M, ¥) into itself are R- weakly commuting
provided there exists some positive real number R such that M (fgx, gfx, t) > M (fx, gx, t/R) forall x € X.

Weak commutativity implies R-weak commutativity and the converse is true for R <1.

Lemma 1: [4] Let (X, M, *) be a fuzzy metric space. Then for all x, y € X, M(x, y, .) is a non-decreasing
function.
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Lemma 2: [2] Let (X, M, *) a fuzzy metric space. If there exists k € (0, 1) such that for all x, y € X, M(x, y, kt)
>M(x,y, t) V t>0,thenx=y.

Lemma 3: [9] Let {x,} be a sequence in a fuzzy metric space (X, M, *). If there exists a number k € (0, 1) such
that M (Xp+2, Xa+1, lﬁ) >M (Xn+1, X, t) V t>0and n € N. Then {x,} is a Cauchy sequence in X.

Proposition 1: [10] In a fuzzy metric space (X, M, *) limit of a sequence is unique.

Proof: Let {x,} be a sequence in X such that {x,} — x and {x,} — y then lim,_... M (X, X, t) = 1 = limyo M
(xm y» t)' .

Now, M(x, y, t) = M(X, Xq, t/2) * M (Y, X, t/2).
Taking limit as n—co0, we get M(x,y,t)>1*% l
Le. M(x, y, t) = 1 for all t > 0. Thus x =y and hence the limit is unique.
_Nov\‘r, we give an example of a pair of maps (A, S) which is semi compatible but not compatible.
Example- Let X = [0, 2], define
Sx=1,x €[0,1) Alx=2,xe[0,1]
=2,x=1; =x/2,x € (1,2]

=(x+3)/5,x € (1,2]

and Xa = 2-1/ (2n) and M(x, y, t) =t/ [tHx-y/]
We have S()=A(1)=2and S(2)=A (2)=l.
Also SA(1)=AS(1)=1and SA(2)=AS(2)=2.
Hence Ax,_,and Sx,—1, ASx,—2 and SAx,—1.
Now, limy.oM(ASK, Sy,)=(2,2,0=1

and UM IM'(_ASx,,, SAX,, t)=(2, ,t)=t/ {t+1} <1.

Hence (A, :S) is semi compatible but not compatible.
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MAIN RESULTS

Theorem 1: Let A, B, S and T be self mappings of a complete fuzzy metric space (X, M, *) with continuous t-
norm defined by a * b =min {a, b}, a, b € [0, 1] satisfying

(1.1)  AX) c T(X), BX) = S(X).
(1.2) Pairs (A, S) and (B, T) are R-weakly commuting.
(1.3) 3 somek € (0, 1) such that forallx,y € X,t>0
M (Ax, By, Bt) > Min {M (Sx, Ty, t), M (Sx, Ax, t),
M (Ty, By, t), M (Sx, By, 2t), M (Ty, Ax, t)}
Then A, B, S and T have a unique common fixed point.
Proof: Let xo € X be any point. As A(X) c T(X) and S(X) < B(X), 3 x;e X and x, € X such that
Axg = Tx,, and Bx; = Sx,. Inductively we construct a sequence {y,} in X such that
Yanr1 = AXgy = TX;ml and Y2 = BXopet = SXopea, (Y20 = Sx20), n =0, 1...
Using (1.3), we have,
M (Y201, Yane2s kt) = M (AXzn, BXani1, kt)
> Min {M (Sx2n, TX2n+1, ), M (Sx2n AXaon, £),M (TXz041, BX2ns1, t),
M (SX30, BxXans1, 20),M (TXzn41, AXan, 1)}
= Min {M (Y20, Y2u+1> £)s M (Y20 Y2u+15 £); M (Y201, Y2ne2, 1),
M (Y20, Y2m025 28)s M (Y2041, Yanr1, )}
= Min {M (Yan, Y2ns¥s £)s M (Y2041 Y202, £)s M (Y25 Y2015 t)-

*M (yz.,ﬂ, Y2n+2s t)s 1 }

= Min {M (Y20, Y2n+1> )y M (Y20+1, Yaue2s 1)}
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\’ =M (Y2u+1> Y20 1)

As M(x, y, t) is non- decreasing (George, and Veeramani, 1994).

Simiiarly, M (y2n+h Y, kt) 2 M (an Y-t t)-
I' Hence M (Yat1s Yoo KO ZM (Vg Yor, ) V 11
We show that

lim, o M (Viips Yo t) = 1 forallpand t> 0

NGW, M (Yn+|,, yn’ t) 2 M (yI‘I! yl‘l-l’ tfk)

v

M (Yn-b ¥Yn-2, ﬁkz)

v

v

M(Y, Yo, t/k"™) — 1 as t/k’ — o as n — .

Thus the result holds for p=1.

By induction hypothesis suppose that the result holds for p=r.
Now, M (fn, Yarests 1) =M Voo Yorrs U2) ¥ M (Yoers Yasee1, V2)
— 1*1=1
Thus the result holds forp=r+ 1
Hence {y,} is a Cauchy sequence in X and as X is complete we get {y.} =z € X.

Hence,

Axpn—z,  Sxm—z - - (1)

L]

TXonn — 2, BXppn—2 - ()

Since A(X) © T(X) 3 forp € Xsuchthatp=T"zie. Tp==z
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By (1.3) we have; (at x= x3, and y = p)
M (Axas, Bp, kt) > Min {M (Sxa, Tp, t), M (Sxan, AXa, t),
| M (Tp, Bp, t), M (Sxa,, Bp, 2t), M (Tp, Axyy, t)}
M (Axz, Bp, kt) = Min {M (Sxa, 2, t), M (Sxz5, AXog, 1),
M (z, Bp, 1), M (Sx3s, Bp, 2t), M (2, Axy,, 1)}

Taking the limit,_..,, we have;
M (z, Bp, kt) =2 Min {M (z, 2, t), M (z, 2, t), M (z, Bp, 1),
M (z, Bp, 2t), M (z, z, 1)}
M (2, Bp, kt) = Min {M (z, Bp, t), M (z, Bp, 2t)}
M (z, Bp, kt) > M (z, Bp, t)
This implies that z = Bp. Since Tp = z therefore Bp = Tp =z. i.e. p is a coincidence point of_"B and T.
Similarly since f?;(X) c S(X) 3 q € X such that q=S"zi.e. Sq =z By (1.3) we have (atx=qand y = xy.1)
M (Aq, Bxz., kt) > Min {M (Sq, Txzi1, t), M (Sq, Aq, t),
M (Tx24+1, BXone1, t), M (Sq, Bxpii, 2t), M (TX2041, Aq, 1)}
M (Aq, Bxzq1, kt) 2 Min {M (z, Txze1, t), M (2, Aq, 1),
M (Txz041, BX 5 n41, t), M (z, BXoyet, 2t), M (TX2n41, Aq, 1)}
Taking the lim,_.. we have;
M (Ag, z kt) 2 Min {M (2, 2, t), M (z, Aq, 1),
M(z z, )M (z z, 2t), M (z, Aq, 1)}
| M (Aq,z kt)2 M (z, Aq, t)
Thistiglleathet ~ 2= aliide S5 =2
Therefore Ag=8q =z

i.e. g is a coincidence point of A and S.
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Since {4, S} is R-weakly commuting by definition we have;
M (ASq, SAq, t)> M (Aq, Sq, t/R) for all q € X.
M (Az, Sz,t)2 M (2, 2, VR)
M(Az Sz, t) = |
implies that Az=Sz.
By (1.3) we have;
M (Az, Bxap:1, kt) = Min {M (Sz, Txzn41, t), M (Sz, Az, t),
M (TX2a+1, BX2s:1, 1), M (S2z, BXgpe1, 2t), M (Txo011, Az, t)}

Taking the lim,_.., we have,

M (Az, z, kt) 2 Min {M (Az, 2, ) M (AZ Az,t), M(z, 2, 1),
 M(Az,2,20, M (z, Az, 1)
M (Az, z, kt) > Min {M (Az, z, t), M (Az, z, 2t)}
M (Az z, kt) > M (Az, 2, t).
This implies that Az=2z
Since Az = Sz therefore Az=Sz=1z.
Since {B, T} is R-weakly commuting therefore by defination we have,

M (BTp, TBp,t) > (Bp, Tp, VR) forall p € X.

M (Bz, Tz t) 2 (22 t/R)
M (Bz, Tz, t) 2 1
implies that Bz=Tz.

By (1.3) we have, (at p=2)
M (Axz, Bz, kt) > Min {M (Sxan, Tz, t), M (SX20, AXns 1),
M (Tz, Bz, t), M (Sx2, Bz, 2t), M (Tz, Axy, 1)}

Taking the lim,-.., we have;
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M (z, Bz kt) 2 Min {M (z, Bz, t), M (z, z, t) M (Bz, Bz, 1),
M (z, Bz, 2t), M (Bz, z, 1)}
M (z, Bz, kt) > Min {M (z, Bz, t), M (z, Bz, 2t)}
M (z, Bz, kt) > M (z, Bz, t) |
This implies that z=Bz.
Since Bz =Tz therefore Bz=Tz=z
Thus we have;
Az=Bz=Sz=Tz=2z
This means that z is a common fixed point of A, B, Sand T.
Uniqueness- Let z and z’ be two common fixed points of the maps A, B, S and T. Then
Az=Bz=8Sz=Tz=zand Az’ =Bz’ =S2"=Tz’ =7’
Using (1.3) we have;
M (Az, Bz’, kt) > Min {M (Sz, T2’, t), M (Sz, Az, 1),
M (Tz’, Bz, t), M (Sz, Bz’, 2t), M (Tz’, Az, t)}
M(z z’,kt)>Min {M(z, 2, t), M(z,z, t), M (2, 2, 1),
M(z 2, 2t), M (z, 2, t)}
M(z 2, kt) > M(z, 2, 1)
This implies that z=27.
Hence z is the unique common fixed point of the four maps A, B, S and T.
This completes the proof.
Theorem.2: Let A, B, S and T be four self maps of a complete fuzzy metric space (X, M, *) with continuous t-
norm defined by a *b = min {a, b} satisfying 1.1, 1.2,and 2.1) V x,y € X, V t>0 3 some ke (0, 1), such
that M (Ax, By, kt) > M (Sx, Ty, t). Then A, B, S and T have a unique common fixed point.

Proof: The proof can be given on the line of that of theorem 1. Here we have only one factor in condition (2.1) as
against 4 factors as in theorem 1 condition (1.3).



GANITA SANDESH, Vol. 25, No. 1, ( June,2011) [21

Corollary 1: Let A, B, S and T be self mappings of a complete fuzzy metric space (X, M, *) with continuous t-

norm defined by a*b=min {a, b} satisfying;

Proof:

(1.1) AS=SA, TB=BT
(12)  A"X) < TP, B'(X) < SYX), where n,m, p, q € N
(1.3) forallx,yin X, 3 somek € (0, 1) and for all t >0
M (A™x, B, kt) > Min {M (S% , T%, t), M (B"y, T, 1),
M (A™x, S%; t), M (BY, S%;, 2t), M (A™x, T%, 1)}
Then A, B, S and T have a unique common fixed point.
As AS = SA and BT = TB we get A"S=S*A" and B'T"=T"B"
We want to show that (A™, S%) and (B", T*) are R-weakly commuting.
Let x, € X be any point, As A"(X) < T?(X), and B"(X) < S%X), 3 x; € X and x; ¢ X such that
A"x, = T?x, and B"X; = $%;. Inductively we can construct a sequence {y,} in X such that
Vanr1 = A™X2n = TP Xoner a0 Yans2 = B"Xonet = S¥%ani2, (Y20 = S%2), n =0, 1.
Using 1.3 of theorem 1 we have,
M (Y15 Yane2s KE) = M (A™X20, B"X2041, kt)
> Min {M (S%azn, 'I“xwl; t), M (B"X2n+1, TPX2nt15 £),
M (A™Xzs, S Xan, £), M (B“x;n; 1s S%2n, 28), M (A"X20, T X201, 1)}
= Min {M (Y20, Y215 O M (Y2042, Y2041 £), M (Y2041, Y2u, .t)’

M (y211+23 Yo, 2")’ M (y%"vh Yantts t):

= Min {M (yzm y2'+|, t); M (yzlﬂ'b y2u+l, t)’ M (yz:» y2n+ls t) o
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M (Y2041, Y202, 1), 1}
=Min {M (y2n Y20+1, ) M (Y2041, Y2ue2, 1)}
=M (Yau+1, Yone 1)
As M (x, y, t) is non- decreasing, then similarly M (Y2u+1, Y20, kt) = M (y2a, Y21, t)
Hence M (Yn+1s Yoo kt) = M (Y, Yu1b ), V .
Now by using similar process of theorem 1, we have {y,} is a Cauchy sequence in X and as X is complete.
We get {y,} =z € X.
Hence
A", — 2, Sy — 2 ' (1)
TPXne1 — 2, B™one) — 2 . (2
Since A"(X) C T(X) 3 forp € X such that p=(T?"'z
implies that =2z
By (1.3) we have;
M (A"x2, B"p, kt) > Min {M (S x,, T%, t), M (B"p, T"p, 1),
M (A"Xa, $%a1s ), M (B"p, S, 20), M (A", T, 1)}
M (A", B"p, kt) 2 Min {M (S x, 2, t), M (B"p, z t),
M (A™X2n, S%20, t) M (B"p, %3 20 M (A", 7, )}
Télking the limit n —oo and using (1) and (2) we Ihave z=B"p (By using similar bmcess of .theomem 1)
Since T?, = z, therefore | B'p=T =z

i.e. p is a coincidence point of B" and T°.
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Now, B"TPp= T"B"p (By using BT = TB or B"T* = T°B")
i.e. B" and TP are commute at their coincidence point p.

Thus (B", T) is R- weakly commuting.

Similarly we can show that (A", S%) is R-weakly commuting.

Hence by theorem 1, A™, B", S* and T” have a unique common fixed point z.

ie. A"z=B"z2=S2=T'z=2z
Now; Az=A (A"z) = A"(Az) and Az= A (§%) = §'Az.
Hence Az is a common fixed point of A" and S°,

Similarly Bz is a common fixed point of B" and T°.
Put x=Az and y=Bzin(l.3), we get

Az =Bz. Hence z= Az=Sz.
Similarly we can prove z=Sz=Tz
Thus we get z=Az=8z2=Bz=Tz

Hence z is the unique common fixed point of A, B, Sand T.

Corollary 2: The corollary 1 remains true if the condition (1.3) is replaced by M(A"x, B, kt) > M(S%, TPy, t)
V x,y€ X, t>0and for some k € (0, 1).

Proof: It follows from Theorem 2 by similar reasoning as in corollary 1.
If we take S = T= I in corollary 2 then the condition (1.1), (1.2) of corollary 1 are satisfied trivially and we get.

Corollary 3: A and B be self maps of a complete fuzzy metric space (X, M, *) with continuous t-norm defined by
a* b=min {a, b} satisfying M (A™x, B"y, kt) > M(x, y, t) foral x, y in X, t> 0, for somek € (0, 1).

Then A and B have a unique common fixed point.
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ABSTRACT

If D is a block design with v treatments arranged in b blocks each of size k such that each treatments
appears once in each of r different blocks (b >r), then the design D* obtained from D by interchanging the blocks
and treatments is called the dual of the original design D. Dualization is a very useful technique. By dualization
sometimes we get the new designs and sometimes already known designs. If the dual of any design D turns out fo
be a higher associate class partially balanced incomplete block (PBIB) design then the analysis of these designs
by the dual method becomes extremely simple whereas the direct analysis of these as a PBIB design would be
very tedious. In this paper we investigate the duals of some two associate class PBIB designs and association
scheme of these dual designs. We also obtained the variances of the es.'imat:ed elementary treatment contrast and

efficiency factor of these dual designs.

Keywords: Group divisible design, Association scheme, Partially balanced incomplete block (PBIB) design,

Elementary treatment contrast
Mathematics Subject Classification (2000):62K10

1. INTRODUCTION

In plane projective geometry if the roles of lines and points are interchanged the dual geometry is
obtained. The statements, “there is one point common to any two lines” and “there is one straight line common to
any two points” are duals. In block design the dual design is obtained by interchanging blocks and treatments.
Thus by interchanging blocks and treatments in a given class of block design, we get a new class of designs. The

design so obtained is called the dual of the original design.
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Many authors like Youden (1951) ,Roy and Laha(1956) , Ramakrishna(1956) , Cerenka and Meza(1978) ,
Mohan (1983) , Chaudhary and Singh (1986) , Pratap and Singh (1988), Bayrak and Gonen (2002), Singh(2009)

have considered the duals of incomplete block design.

Clatworthy (1973) has listed more than 800 actual plans of PBIB(2) designs for which2 <k <10 and 2 <
r < 10, where k is the number of experimental units (block size) and r is the number of blocks (replication of a

treatment). In the tables of Clatworthy these 800 designs are classified into the following type:

(a) Group divisible design (GD)
The GD designs are further classified into three categories viz. singular (8),
semi-regular (SR) and regular (R)

(b) Triangular

(c) Latin-Square type

(d) Cyclic

(e) Partial geometry and

(f) Miscellaneous

In these tables Clatworthy(1973) also mentioned something about the dual of each 800 designs. It is

worthwhile to note that these tables are a revised and enlarged version of the earlier tables éiv'en by Bose,
Clatworthy and Shrikhande (1954).

In this paper, we study the duals of some regular group divisible designs R18, R34 , R38 and R41[cf ;
Clatworthy(1973)]. The designs R18, R34, R38 and R41 are all two associate paﬁially balanced incomplete block
(PBIB(2)) design. According to the Clatworthy(1973) duals of these regular group divisible PBIB(2) design are
neither balanced incomplete block (BIB) design nor PBIB designs with two associate classes. According to our
investigation these dual designs turns out to be four associate class PBIB design having a block contents based
association scheme which is also discussed in this paper. Thus this investigation will augment the tables of
Clatworthy (1973).

2. DUALSOFR18,R34,R38 ANDR 41
The parameters of the designs R18, R34, R38 and R41 are
v=3a, b=3a’, r=2a, k=2 and efficiency factor

E = 3(3a-1)/ (18a-10) ,
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fora=234and$ respectively. The 3a treatments are grouped as below :

1 2 = T a Igroup
atl a+2 at3 .. 2a I group
2a+] 2a+2 2a+3 .. 3a M group

"The duals of the designs R18, R34, R38 and R41 will be denoted Ey R*18, R*34, R*38 and R*41
respectively. Our investigation reveals that the designs R*18, R*34, R*38 and R*41 are PBIB designs with four

associate classes (PBIB(4)) having a block- contents — based association scheme mentioned here.

The parameters of these designs are
v*=3a%,b*=3a,r*=2,k*=2a, '=1= 4,
A =0=4, n: =2a, n,=2(a-1), n,=2a(a-1),
n; =(a-1)*, fora=234and5 respective!, ;

Below we define the association scheme of these PBIB(4) designs and obtain the variances of the estimates of
the elementary contrasts of the treatment effects.

3. ASSOCIATION SCHEME

We define the association scheme as follows: Let p and q be the blocks in which a particular treatment (for

which have to found various associates) occurs in the dual design. For p,q as the treatments of the original design,
let pi , p2 ..., pai be the other treatments of the group to which p belongs and ¢, ¢, ....q,_, be the other

treatments of the group to which q belongs. We now define the association scheme in terms of treatments
occurring in the blocks p.q, Pi, P2 --» Pat, Qis G2 -rs Gaa, » Of the dual design. We denote the set of treatments
present in the jth block of the dual design by B(j) and S stands for the set of all treatments. Now

$1="(P) V(@ -"(») N (@)

= set of those treatments which are either 1 or Il associates.
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S:=S-"(p)u (@)

= set of those treatments which are either IIl or IV associates.

Further we find that
S;=[[*P) N %@ L [P N%a) 1, - [®(P) NP(qa) ],

%@ N "e0 1. 1%@ N Bp2) 1., [B@) N %(par) 1]

is the set of 2(a-1) treatments which are II associates.
Thus the I associates can be obtained by S; - Ss.

Finally the set S, of (a-1 )’ treatments which are fourth associates is obtained as below :

B N B, 3@ N B(p2)--., *(@) N B(pat)

...................................................

...................................................

B(qa1) N B(P1) > 2(Gar) N (P2, - *(Gat) N B(Pa)-

Now the third associates can easily be obtained by S;—S,.

The variances of the estimates of the elementary contrasts of treatment effects are as below

' {(602 +3a-1)/ 6a2} o’ for I associates

V(A A ) {(20"‘]);“20’} 0'2
tu—tu) = «

| {6 +6a-1)/6a} o7
{(a+1)/a} o

for Il associates
forIll associates

for 1V associates

“The efficiency factor E* is

E* = 3(3a’-1)/ (92’ + 9a - 10)
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ABSTRACT

The n-dimensional discrete cube, denoted by Q,, , is defined as the graph (V, E), where the vertex set V
consists of all the subsets of {1,2,...n} and there is an edge between two subsets if the size of the;r symmetric
difference is 1. Thus, (4, B) € E, if [AAB| = 1. If n is odd, say 2k + 1, then the bipartite subgraph induced by
the sets of sizes k and k + 1 is called the middle two layer’s graph. The long standing middle two layers’
‘conjecture is that this graph is hamiltonian. Modular matchings were introduced by Duffus, Kierstead and

Snevily [1] as a tool to study the middle two layers’ graph and its conjecture. In this paper, we show some

properties regarding the connectivity of the cubic subgraph of Q, formed by three consecutive modular

matchings.
Keywords: middle two layer’s conjecture, modular matchings, hamiltonian, factorization.

PRELIMINARY NOTATION AND DEFINITIONS

We denote the collection of all J-element subsets of [n] as R; and call it the j’th layer of the discrete

cube @, of dimension n. When n is odd, say 2k + 1, clearly the middle two lhye'rs of Q2441 have the same

size, since (3511) = (2":1) and there is an edge between any two vertices of the middle two layers if one vertex
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is contained in the other. The graph induced by these middle two layer’s Ry and Ry 4 of tl_ discrete cube
Q2i+1 is called the middle two layer’s graph, denoted by Bj. The number of vertices adjacent to a given vertex
v is called the degree of v. If all the vertices have the same degree k, the graph is called k-regular. A 3-regular
graph is called a cubic graph. A 1-factor of a graph G is a perfect matching of G, or a spanning 1-regular
subgraph of G. Decomposition of the edge-set E(G) of a graph G into a collection of 1-factors s called a 1-
fatcorization of G. Thus when we form a I-factorization of the middle two layer’s graph By, it will be a

collection of k + 1 disjoint perfect matchings. One such decomposition is given by the modular meatchings.

Definition 1.1 Givenn = 2k + 1, the i-th modular matching m;, fori = 1,2, ... k + 1 is defined as the function
m;: Ry = Ry, with m;(A) = AU {x} where x is the j’th largest element of A and j is given by j =i+

Yaca@ (modk+1).

Note that in any modular matching , the index i is computed modulo (k + 1) and we usually replace
i = 0 with i = k + 1. It will be convenient for us to consider a perfect matching in By as an injection m: Ry, —
Ry+1 such that A is adjacent to m(A). Thus, if A is any k-element subset of [n] , then the i’th modular matching
m; of By, consists of the edges (4,m;(4)). We denote the subset of contiguous elements {x —7,x =7 +
1,..x — 1} of the set [1,2,.. 2k + 1] by any of the following ways: [x —7,x — 1] ,'(x -r—1x-1],
(x —r —1,x — 1] or (x — r — 1, x), where the addition and subtraction of elements is done modulo 2k + 1. In
this notation, we write the segment of a set A as the maximal interval [x, y] contained in the set respecting the
underlying circular ordering as mentioned above. A path P is a sequence of vertices v, Vs, ... V. where all the
vertices are distinct and (v;_,v;) is an edge for i = 1,2 ... k. We denote the various paths that are the subgraph
of P as follows: Pv; = vg, Uy, ... Uiy ViP = Uy, Vigq, o Vg and ViPVj = Uy, Vigq, . Vj. If we want to reverse the
path, we ‘will refer to it as v;Pv; = vj, Vj_y, ... Vj, Or simply as P if it is from vy to v,. Duffus, Kierstead and
Snevily in [1] showed that, that m; is a well—deﬁ;ed matching and {my, my, ..., My,1} forms a 1-factorization
of By. They did this by introducing the following inverse function b; from Ry to Ry and proving that m;ob; =

id.
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Definition 1.2 Givenn = 2k + 1, fori = 1,2, ...k + 1 let b; be the function b;: R4y = R, given by b;(B) =

B\{y} where y is the I’th smallest element of Band | = i + Xpegb (mod k + 1).

It is also shown in [1] that the modular matchings are essentially invariant under the rotation and

reflexive permutations and that no other permutation preserves m;.

Let Hgpc(k) denote the spanning subgraph of By whose edge set is mz Umy Um,. If the three
matchings are consecutive, i.e.a =b —1andc = b + 1, we will use the notation Hy (k) to denote the resulting
subgraph. Both these subgraphs are cubic. Whenever the value of k is clear from the context or it is true for all
values of k, we will write Hg ), and Hy, , instead of Hg (k) and Hy, (k) respectively. For a set 4 of size k, let
A(i) denote the element x € A® such that m;(4) = AU {x}. The elements A(1),A(2),...A(k + 1) satisfy the
property A(i + 1) < A(i) unless A(i) is the smallest element of A°, whence A(i + 1) becomes the largest
element of A°.Hence the decreasing sequence of A(i)’s have an underlying circular ordering. This observation,
which follows from the definition of modular matchings was made in [2]. Similarly, if B is a set of size k + 1,
we denote the element B(i) to be the element y € B such that b;(B) = B — {y} and we observe that the
elements B(1), B(2), ... B(k + 1) satisfy the property that B(i + 1) > B(i) unless B({) is the largest element of
B, in which case B(i + 1) becomes the smallest element of B. Once we know the position of A(i) for any k-set
A and any i, it becomes fairly easy to locate the edges-of any remaining modular matchings which are incident
with the vertex B = m;(A). This becomes even easier if the matchings are consecutive or almost consecﬁtive.

This is the underlying idea used in the following, which is one of the two main results of this paper.
Proposition 1. The distance between any set of size k, Ay and m;,3(Ay)in H; is at most 11.

Proof: Letx = Ay(i + 2) mod (2k + 1) so that m;,;(Ag) = A U {x}, which we denote by B. Also let c be
the largest element of the segment of Ay, which is te the left of x in the underlying circular ordering as described
above. We will show that there exists a path from A, to B using only the edges of the matchings

m;_4,m;, M;,1. The paths can be shown in tables where the rows of the table denote the adjacent vertex sets of
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the middle two layer’s graph By, represented as binary sequences [ay, @z, ... @3k 41] Of length 2k + 1and an
element j belongs to the set if and only if @; = 1. We have also used the convention that 4 ;’s represents sets of
size k and B;’s represents sets of size k + 1. Only some of the crucial elements of the underlying set [2k + 1]

are shown on the top.

Case 1: Ap(i+1)= x+1mod (2k +1). We add this element x + 1 to A, to obtain the vertex- set
By = m;,1(Ap). The element ¢ can now be easily identified as B (i) and we remove it to reach the next vertex-

set A; = b;(By). The following two subcases arise.

Subcase 1a: ¢ = x — 1. This is shown in the following Table 1. We add the element x using the edge from
the modular matching m;_4 to reach the vertex set B;. Then we undo the changes we made by removing the
element x + 1 with the matching m; and adding the element ¢ back in with m;, 4 and we are done. As Table 1

shows, we reach the desired vertex by a path of length 5.

Table 1. Subcase 1 a Ag(l +1)=x+1,c=x-1

Vertex- Location of ¢ | Locationof x | x+1
sets | i e |
- _ 0
Ao Ag(i+1).
- 1 0 1
%o A BN ¥
0., = g 1 -
Bs o B
0 1 1
& 2k B, (i)
2 L0 s ] 1 0
2 A+ 1)
B, I 1 0

Subcase 1b: ¢ # x — 1. Here, the required element x is greater than ¢ + 1, but still we add ¢ + 1 using the

matching m;_q to reach B; = m;_1(4,) and then remove x + 1 with m; to get A,. Now we are in a position to
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add the required element x to get B, = my,1(Ap). Then we correct the changes we made by removing ¢ + 1

with m; and adding c back with m; 4. In this case we have to take two additional steps, sQ we reach the desired

“vertex by a path of length 7. This completes the first case.

Case 2: Ay(i+1) # x+1mod (2k + 1). In this case,lthere are elements lying between x and A, (i + 1). In
fact, there is exactly one segment , say [a,, b, ], between them which could very well be of size one, as indicated
in the table by dots. Hence a, could be equal to by, but a segment will still exist. As we will see, the length of
this segment does not affect the path that we take. We first add Aq(i + 1) = b; + 1 to reach the vertex set
By = m;11(Ap). Now By (i) = b, which we remove using the modular matching m; to reach 4;. Then we add

the required element a; — 1 to get By = m;,1(4,) and remove ¢ with m; to get A,. Again we have two

possibilities as in Case 1.

Subcase 2a: ¢ = x — 1. We add the element b, back using the edge from the modular matching m;_ to reach
the vertex set le. Then we remove the element by + 1 with the matching m; and finally add the element ¢ back

in with m; 4 to reach A3 followed by B3 which is our required set B. This takes 7 steps, as shown in Table 2.

Table 2. Subcase2a. Ay(i+1) #x+1, c=x—1

Vseerttsei(- Lo;:?t;on Lo:):?t;on a by by +1
A ' ’ ' Ag(ig‘l' 1)
B, 1 0 Bol(;;) 1
4 ' Ay (ig+ 1) ’ 1
B, 311( " 1 0 1
A, ’ _ 1 nin|
B, 0 1_ 1 3;_:1-(;')

A3 Ag(ig+ 1) ] ' "

B, =B 1 1 1 0
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Subcase 2b: ¢ # x — 1. The second possibility .of Case 2 has x > c. In this case ,weaddc+1 to.get
B, = m;_1(A;) and again remove x =a; -1 usiné the modular matching m;, although that is the target to be
added. The set reached is A3 = b;(B;). We now correct the modiﬁ(;ations we made by adding b, back in using
m;_4 to reach B, and remov; by + 1 using m; to reach A,. Now we finally add our required candidate

x = a; — 1 to reach By = my,1(A,) and revert the changes we had made on its left by removing c + 1
using m; to reach As and then adding ¢ with the modular matching m;, 4 to reach the final required set Bs = B

in 11 steps.
Corollary 1. The distance between any set of size k +1,B and b;,,(B) in H; is at most 11.

Proof: Let A = b;,2(B). Then by the above proposition, we have a path P from A to m,,,(A). But since,
Duffus, Kierstead and Snevily in [1] showed that m;°b; = id, V i, we have that m;,5(4) = m;,(bi42(B)) =
B. Hence by reversing the path, we obtain the required path P, from m;,;(A) = B to the required vertex

b;,2(B) = A of distance at most 11.

We will use the above lemma and its corollary to give the alternate proof of the theorem from [2] that

the subgraph of By, formed by three consecutive modular matchings is connected.
Proposition 2. H;is connected V i.

Proof: We will first show that for any given i, there is a path in the subgraph H; between any k-set A and
Misz4;(A), ok all j = 0,1, ..k = 1. To do this, wé will apply induction on j. For j = 0, the result follows
directly from the above Proposition 1. Now suppose that the result is true for some = 0.' Applying the
induction hypdthesis to the subgraph H;...i,‘we have a path P from A to m;,3.4;(A) in this subgraph. So, P ases
only the edges from m;, my,4 and My,. But then, again by the above Proposition 1, the edges from the

matching m;,, can be replaced by paths using only the edges of H; of length at most 11. Hence there is a path
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from A to m;,3.;(A) in H; itself and the induction hypothesis is true for j + 1 also. This completes the proof by
induction for the first part. Similarly, using Corollary 1 we can show that there is a path from every (k + 1)-set
B to byy4j(B), for all j=0,1,..k—1. Now from [1] we know that {my,my,.., My} forms a I-
factorization of the entire middle two layer’s graph By,. Sinc;a By, itself is connected, there is a path between any
two vertices using these k + 1 modular matchings and by the above induction result, these matchings can be

replaced by paths consisting of edges of H; only. This completes the proof of the proposition.




-
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OPTIMUM VALUES OF SECOND ORDER MOMENT WHEN HARMONIC MEAN

AND ARITHMETIC MEAN ARE PRESCRIBED

ANJU RANT
Deptt of Mathematics, R.R. College ALWAR
SHALU GARG
Deptt of Mathematics, MITRC, ALWAR

ABSTRACT

For any given probability distribution, we can obtain all the moments. But if some moments are given, it
is not necessary to obtain a probability distribution satisfying all these moments. Such a probability distribution
exist only if moments are consistent. To check the consistency of moments we need information about maxinium
and minimum values of one moment wheri other moment/moments is/are prescribed. In this paper our aim is to

obtain the maximum and minimum values of Second order moment when Harmonic mean and Arithmetic mean
are prescribed.

Keywords: Consistency, minimum & maximum values of moment, switching point
INTRODUCTION

If a probability distribution is given, values of different moments can be determined uniquely since for the
given distribution network is rigid. But if only partial information is available about the probabilities then the
network is flexible. Partial information about probabilities may also be given in the form of values of some
moments. There are infinite sets of probability distribution for the given moments and corresponding to these
distributions, there may be infinite sets of required moments.

Taglini [6] had given the application of maximum entropy to the moments problem. Traditional ly, the
method of Relative Entropy Maximization is considered with linear moment constraints. But Grendar [4] studied
the method under frequency moment constraints which are non-linear in probabilities. Lutwak, Yang & Zhang [5]
considered Moment-Entropy inequalities for a random vector. Anju Rani [1,2] had’calculated maximum and

minimum values of 7" order moment when s™ order moment is prescribed for the continuous and discrete
variables. ;

In the present paper, we shall obtain analytical expressions for maximum and minimum values of Second
order moment when the Harmonic mean and Arithmetic mean are prescribed.
i
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Further we shall consider special case when n=6 and obtain maximum & minimum values of
Second order moment for the given values of Harmonic mean & Arithmetic mean and these values of Second
order moment are given in the table form. In the last, we shall give concluding remarks.

ANALYTICAL EXPRESSIONS OF MAXIMUM AND MINIMUM VALUES SECOND
dF ORDER MOMENT WHEN HARMONIC MEAN
AND ARITHMETIC MEAN ARE GIVEN

Let a discrete random variate x takes values 1, 2, _ _, n with probabilities  py, ps,_ _ _, py. Its
Harmonic mean and Arithmetic mean are H and M respectively. There will be many probability distributions

with these values of Harmonic mean & Arithmetic mean and for every one of these, there will be a Second order
1y 1/2
moment say (uz) . Although Second order moment is not uniquely determined , but the set of all values of

Second order moment for given values of Harmonic mean and Arithmetic mean will have a maximum value
I

sa ( )
y l12

choose py, P2,_ _ _, Py to optimize uz , where

' .
and a minimum value say ("2) .. Our aim is to obtain these values. In other words, we have to

max min

u; =L o ' e (1)

subject to
Thap=1, B %=0, ZLiip=M @)
This is a linear programming problem having three equality constraints, hence maximum and minimum

values will occur when at most three of the probabilities are non zero.
Let these be pp,p, and p;. Then

Prtpetp =1 24248l oy dkp 4 ip =M )

3
H
on solving equatibn (3). we get

_ h[kl+H (M=k--D)]

Pr= THG-nya-n) - (4
_ k[H(r+1-M)—hi]
Pk = Thie-my a -1 e (3)

« _ 1[nk+H (M=h—K)]
Pt= THa<ma-n s (6)

from equations (1), (4), (5) and (6)
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" R3[kI+H(M—k-1)] | Kk*[H(h+1-M)-hl] 13[hk+H(M-h~-k)]

\ H2 = ThGe-man H(k—h)(1-k) HUI-h)(I-k) - (7)
Now, , - ‘
‘%;:_: {kl+H(l:—kﬂ-l)} h? {?:_—;;(gt;))?k!} - -1k) [(l _‘;)2 - (ki)z }] >0 w(®
d —M)- —k2 {Kk2- 3 . 3
2 postonon T e~ ] <0 -0
f&‘_'i; - {hk+l-l(:—h—k)} [zz {!(za:i!)(:(fr)c;:hk} + (k_lh) { (:;)2 - (xf:z)z}] >0 ..(10)

Hence u; increases with h, [ and decreases with k.

First we calculate feasible range of M for given value of H. So, for this we use following expressions
by Anju Rani [3]. ‘

(i) When H takes discrete values

Mpin =H L (1D
and, when H does not take discrete values
L[H+1 -
Mmin = [H] + —"—-[[H]:L] .. (12)

where [H] is integral part of H and 0 <L<1

(ii) The expression for maximum value of M is given as

Mpay =1 4+0—2 .. (13)

For the given values of H and My , probability py, is zero  at point (1, a, a +1) or p; is zero at point (a,
a +1, n) & for the given values of Hand Mp,.y , probability p, =0 at point (I,n-1,n). HE (a,a+ 1].
Herep, =0 for{lSh<k<H<l<n}or{lSh<k<H<lsn}&p=0for{lshsH<k<Is<

r

1/2
n}or {| £h <H < k<1< n}. Forthe given values of Hand Mp;n, the values of ("2) are the same at all

. 1v1/2
existing points and similarly for the given values of Hand Mp;y, the values of (pz are the same at all
existing points.
MINIMUM VALUE OF SECOND ORDER MOMENT
1, is minimum when h =1,k =a,l = a+ 1, then from equation (7)
! - _ {a(a+1)+H(M-2a-1)} a3{H(a+2-M)—-(a+1)} (a+1)3(a+H(M—-a-1)}
[(“z)w-n](l aa+1) - H(a-1)a H(a-1) + Ha k1%
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from this expression, for given value of Harmonic mean we cannot obtain (”2) for all values of Arithmetic
min

mean. Since probability distribution does not exist for such values. For obtaining another points to lie minimum

value of Second order moment, we consider those conditions when only two probabilities are non zero. These

are: '

pe(l,a+b,a+b+1)=0,fora=] and py(l,a+b—1,a+b) =0, fora>Il.

This situation occurs at particular value of M say My,. My, is switching point for (ué) . The
min
expression of My, for a=1 can be obtained from equation (5) by taking p, =0

forh=1,k=a+b,l=a+b+1.

(b+3)H-(b+2)
My, = —-——H(— o C1S)

at switching point M,
2) ) = (),
[( Z)mm(l,b+1,b+2) (z)min(l,b+2,b+3)
(uz)mm occurs atpoint (1,b+ 1,b + 2) for Mpjn <M < My, (for b=1)
or M(b—l)- <M< M, (for b>1)
( u;)mm occurs at point (1,b+2,b + 3) for My, <M < Mgy gy,

and for a> 1, the expression of My, is obtained from equation (5) by taking pp, =0

forh=1,k=a+b-1,l=a+b

My, =.@;L)P:'l_(a,+_b)_ ... (16)

at switching point M,

[(ué)min](l,a +b—-1,a+b) - [(ué)min]( l,a+ba+b+1)

(1.12) occurs at point (1,a + b —1,a + b) for My <M < My, (for b=1)

min .

or M(b—1)* <M < My, (for b>1)
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()

Similarly, we obtain M;, from equation (5) by equating to zero forh=1,k=n—-2,l=n-1.

occurs atpoint (1,a+b,a +b +1) for Mp, <M< M),

min

_ Hn-(n-1)

M, = == ..(17)

where i represents the number of switching points for (].Lz) ,J=n—-a-1fora> landl=n-3fora=1.

min

For discrete value of Harmonic mean, M,,,;, and M;. concide to each other.

for value M;.
[(”Z)mm]( 1,n-2n-1) B [("Z)mm]( 1,n-d,n)
()

(llz)mmoccurs atpoint (1,n — 1,n) for Mj.<M < M.«

occurs at point (1,n—2,n — 1) for M_q). <M <M,

min

MAXIMUM VALUE OF SECOND ORDER MOMENT

1\1/2 . ‘
(“2) is maximum when h =a ,k =a + 1,1 = n. So, from equation (7)

_ 33{n(a+1}l+'H(M—n—é—l)} g (a+1)3{H(n+a_M)_na} l‘lg{&(a+l}+H(M-2a—1)}
maxi(a,a+1,n) B H(n-a) H(n-a-1) H(n-a)(n-a-1)

... (18)

[6)

Now, we are considering those conditions when only two probabilities are non-zero.

pe(@a—b+1a—b+2,n) =0fora<n1& pela—ba—b+1,n)=0, fora=n-1.

This situation occurs at particular value of M say Mp. My is switching point for (p.z) The
: max

expression of My, for a <n-1 is obtained forh =a—b+1,k =a—b+2,1=n from equation (5) by
taking p, = 0.

__ H(n+a-b+1)-n(a-b+1)
- H

My ... (19)
at switching point My, .

[("I;)max](a _b+l,a-b+2,m) [(ué)max](a —ba-b+1,m)
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(p.z) occurs at point (a — b +1,a — b + 2,n) for Mp;n <M < M;, (for b=1)
max
or My_q) <M < My (for b>1)
(pz) occurs atpoint (a—b,a—b+1,n) for My <M < Mp,,,)
max

and the expression of My fora=n-1 is obtained from equation (5) by taking p, =0
for h=a-b,k=a-b+1,l=n

¥ H(2n-b~1)-n(n-b-1
Mj = =) ... (20)

for switching point M

) ) (),...]
[ ( Z)max (a—b,a—b+1,n) (uz)max (a—b—-1,a—b,n)
(u') occurs at point(n — b —1,n — b,n) for Mp;, <M < M (for b=1)

2/ max

or Mg,_1) M < My (for b>1)
(u') occurs atpoint(n—b —2,n—b—1,n) for Mp<M < Mp11)
2 max
Similarly, we obtain M{ from equation (5) by equating to zero for h=2,k=3,l=n.
j q g

«+ _ H(n+2)-2n

M - . @1)

where j represents the number of switching points for (pz) , j=a-1 for a <n-1 and j=n-3 for a=n-1.
max

for value M]*

[(ué)max](z ,3,1n) - [(“;)max](l,‘z 1)

(ué)max occurs at point (2,3,n) for Mg_q) <M < My

(HZ)max occurs at point (1,2, n)_for M{<M < Mpax
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Now, we find variation of ", with respect to H and M.

1 1/2

. (u ) :
G o e <o
("2)
a(u,)
H (a+1) |a(a+1)
d:pmm = %Iﬁ%{- 1] ,> 0 ... (22)

1/2
(u ) is convex decreasing function of H.
2/ min

1f2
a(p
(2) —Y5la+1] > 0
u

2
1/2
dz(“ ) 1
i o i [P € . (23)
’ * (“2)
r\1/2
(p ) is concave increasing function of M.
2 min
r1/2
d(“g)m C 1 na(a+1)
— T 1/2 [ ] < 0
2(”2)
()
Hy max _ na(a+1) |na(a+1)
om0
r\1/2
(p.z) is convex decreasing function of H.
1/2
dip
(2) —Zmax. = - [n+2a+1] > 0
2(],12
()
18
—;h—l';i?*— = —4—?75 n+2a+1)? < 0 ... (25)
)
n1/2

(p is concave increasing function of M.
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MAXIMUM AND MINIMUM VALUES OF SECOND ORDER MOMENT
WHEN HARMONIC MEAN AND ARITHMETIC MEAN ARE GIVEN: SIX FACED DICE

Now we calculate maximum and minimum values of second order moment for a six faced dice i.e. n=6.
We calculate the values of second order moment for prescribed moments belonging to all possible intervals
and observe how the minimum and maximum values of Second order moment shift from one set of (h,k,D) to
another set of (h,k,l).

Here we take different intervals in which Harmonic mean lies. These intervals are (1,2], (2,31, (3.4],
(4,5], (5,6]. In these intervals, values of Harmonic mean are taken as 1.25, 1.5,....5.75, 6.0. But in the present
paper we are considering only for H=1.25. Similarly we can obtain maximum and minimum values of Second
order moment for other values of Harmonic mean.

: 1\1/2
For the given value of H, we obtain maximum and minimum values of M. Values of (”2) are

given in the following table for the given values of H and M. Out of these values we obtain minimum and
1y 1/2 1\ 1/2
maximum say (”2) & (pz) respectively. ForHE (1,2, h=1, k=2,3, _ ,51=3,4, 6.

min max
H=1.25
First, we calculate values My, from equation (12) and M4, from equation (13) for H=1.25

Mpin = 1.4 and Mgy = 2.2

M 14 15 1.6 1.7 1.8 1.9 2.0 2.2
hkl
1,23 |1.4832 | 1.6733 | 1.8439
1,24 | 1.483 | 1.703 | 1.897 | 2.073 | 2.236
2 1 2 6 2
1,25 | 1.483 | 1.732 | 1.949 | 2.144 | 2.323 | 2.489 | 2.645
2 1 2 8 9 8 8
1,26 | 1.4832| 1.7607 | 2.0000| 2.2136 | 24083 | 2.5884 | 2.7568 | 3.0659
1,3,4 1.8439 | 2.0493 | 2.2362
1,3.5 1.843 | 2.073 | 2.280 | 2.469 | 2.645 | 3.065
9 6 4 8 8 9
1,3,6 1.843 | 2.097 | 2.323 | 2,529 | 2.720
9 6 8 8 3
14,5 2.2362 | 2.4494 | 2.6458 '
1,4,6 . 2.2362 | 2.4698 | 2.6832 | 3.0659
1,5,6 2.6458 | 3.0659

Table 1 for (pzr)w




GANITA SANDESH, Vol. 25, No. 1, ( June, 2011 ) [47

r

1/2
(p.z) is obtained from equation (7) for M,y;, at point (1,2,3)

(pé)m = 1.4832

1\1/2
(”2) is obtained from equation (7) for M,,, at point (1,2.6)

L}

(”2)1;2 = 3.0659

i1 :
ForM = My,in, (p.z) f occurs at point (1, 2, 3). From table 1 we observe that for M = 1.6 the values
1\1/2 i _ 1\1/2
of (u ) are equal at points (1,2,3) and (1,3,4) ie. (p ) shifts from point (1,2,3) to (1,3,4) at
2 min 2 min
M=M,, =16.

M,, is first switching point. The value of M, can be obtained fora=1,b =1, H = 1.25 from equation

(15).

1y1/2

for value M, , [(“2) 1/2

= I, = 1.8439
mfn]a 2,3) [( 2)""'“](1 3,4)

~ Now, (p ) is calculated from equation (7) at point (1,2,3).
2 min

(“2) =6M-62, for M € [1.4,1.6] or My, <M <M,

min
1\1/2
Again, (uz)min shifts from point (1,3,4) to (1,4,5) forM = M,, =1.8.

M., , second switching point, can be obtained for a=1, b=2, H=1.25 from equation (15).

for value M, . [(u;)m] = [(”2)

minl(1,3,4)

1/2
] = 2.2362
min (1 ’4 i 5)

(p:;) is calculated from equaﬁon (7) at point (1,3,4).

min

(pz) =8M - 94, for M € [1.6,1.8] or M;. <M <M,,

min

Now, (1)

2/ min
the last switching point. Since [ =3

shifts from point (1,4, 5) to point (/, 5, 6). hence from equation (17), M3, = 2.0. M3, is
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1/2 1/2

= 2.6458, for value M;,

() - [(u;)

(“2) is calculated from equation-(7) at point (1,4,5).

min

min] (1 A ’5) mtn](l '5 ,6)

(p'). = JOM—13, for M €[1.8,2.0], M,, <M <M;,
2/ min '

(p.2) is calculated from equation (7) at point (1,5,6).

min

(p.z) =12M-17, for M € [2.0,2.2] or M3, M <M,y

min
1 1/2

Here j = 0, so there is no switching point for (u 2)
max

1\1/2

(1)

occurs at point (/, 2, 6) fbr all values of M for H = 1.25 .

max

(r) =oM- 104,

max

for M € [1.4,2.2] or Mpyin <M < M

Similarly we can obtain optimum values of Second order moment and switching points for other values of
Harme:aic mean.

MAXIMUM AND MINIMUM VALUES OF SECOND ORDER MOMENT

FOR GIVEN VALUES OF H AND M FOR ALL POSSIBLE INTERVALS

H - W Min Max H M Min Max

1 1/2 1 1/2 1 1/2 1 1/2

() | ()" ()" | ()"

125 14 | 14832 | 14832 | 15 26 | 3.2145 | 33764

125 15 | 16733 | 17607 | 15 | 26667 | 33167 | 3.4641

125 | 16 | 18439 | 2000 | 15 28 | 35496 | 36332

125 17 | 20493 | 22136 | 15 30 | 38729 | 38729
125 18 | 22362 | 2.4083

125 10 | 24494 | 25884 | 175 | 18571 | 18899 | 1.8899

T el g g by . il

P s gy g g e e ka0 N e g
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H M Min Max H M Min Max
1 1/2 1\ 1/2 1\1/2 1\ 1/2
()" | () ()" | )"
1.25 2.0 2.6458 | 2.7568 1.75 2 21044 | 2.2042
125 21 2.8636 | 2.9155 1.75 2.2 2.3725 | 2.5804
1.25 2.2 3.0659 | 3.0659 1.75 2.2857 | 2.4785 | 2.7258
1.75 2.4 2.6565 | 29084
1.5 1.6667 1.7321 1.7321 1.75 2.6 2.9424 3.2029
1.5 1.7 1.7889 | 1.8166 1.75 2.7143 | 3.0937 | 3.3592
1.5 1.8 19494 | 2.0494 1.75 2.8 3.2291 | 34725
1.5 1.9 2.0976 | 2.2583 1.75 3.0 3.5253 | 3.7227
15 20 2.2361 | 2.4495 1.75 3.1429 | 3.7235 | 3.8913
1.5 21 2.4082 | 2.6268 1.75 3.2 3.8137 | 3.9571
1.5 22 2.5691 | 2.7928 1.75 3.4 41163 | 4.1783
15 23333 | 2.7688 | 2.9999 1.75 3.5714 | 4.3589 | 4.3589
2.0 2.0 2.0000 | 2.0000 25 3.0 3.1306 | 3.3764
2.0 2.2 2.2804 | 2.4083 2.5 3.2 3.3763 | 3.6878
2.0 2.4 2.5298 | 2.7568 2.5 3.4 3.6056 | 3.9243
2.0 2.5 2.6458 | 29155 2.5 3.6 3.8729 | 4.1473
2.0 2.6 2.7928 | 3.0659 25 3.8 41232 | 4.3589
2.0 2.8 3.0659 | 3.3466 2.5 4.0 43589 | 4.5607
2.0 3.0 33167 | 3.6056 2.5 4.2 4.6260 | 4.7539
2.0 52 3.6056 | 3.8471 2.5 44 | 48785 | 49396
2.0 3.4 3.8729 | 4.0743 2.5 4.6 51186 | 5.1186
2.0 3.5 4.0000 | 4.1833
2.0° 3.6 41473 | 4.2895 275 28182 | 2.8445 | 2.8445
2.0 3.8 44272 | 4.4944 2.75 2.9091 29387 | 3.0154
2.0 4.0 46904 | 4.6904 2.75 3.0 3.06 3.1766
2.75 3.2 33112 | 3.5058
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| H M Min Max H M Min Max |
1 1/2 1 1/2 1 1/2 1 1/2
()" | ()" ()" | ()"
225 | 23333 | 23804 | 23804 | 2.75 34 | 35444 | 3.8067
2.25 2.4 2463 | 25296 | 275 | 35455 | 3.7051 | 4.0112
2.25 26 | 26956 | 29324 | 275 36 | 3.7781 | 4.0854
225 | 26667 | 2.7688 | 30552 | 275 | 3.6364 | 3.8257 | 4.1342
2.25 28 | 29552 | 3.2457 | 2.75 38 | 4.0340 | 4.3086
2.25 30 | 3.2144 | 35121 | 275 40 | 42747 | 45127
2.25 32 | 34544 | 37596 | 275 | 4.1818 | 44824 | 4.6903
225 | 32222 | 348 | 3.7858 | 275 42 | 45064 | 4.7079
2.25 34 | 36897 | 39918 | 2.75 44 | 47653 | 4.8953
2.25 36 | 39859 | 4.2113 | 275 46 | 50108 | 5.0759
225 | 37778 | 42030 | 4397 | 275 4.3 5.2448 | 5.2502
2.25 38 | 42350 | 44198 | 275 | 48182 | 52655 | 5.2655
2.25 4.0 45095 | 4.6189

2.25 42 | 47682 | 48099 | 3.0 3.0 3.0000 | 3.0000
225 | 43333 | 4933 | 4933 3.0 3.2 3.2558 | 3.3466
3.0 34 | 34928 | 3.6606

2.5 26 26458 | 26458 | 3.0 36 | 3.7148 | 3.9497
2.5 28 | 28636 | 3.0332 | 30 3.6667 | 3.7859 | 4.0412
3.0 38 | 39582 | 4.219 35 | 45714 | 47359 | 49571
3.0 40 | 42032 | 44721 | 35 46 | 47719 | 49827
3.0 42 | 44349 | 4669 35 4.8 50171 | 5.1602
30 | 43333 | 45825 | 47958 | 35 5.0 5.2508 | 5.3318
3.0 4.4 4669 | 48579 | 35 5.2 5.4746 | 54979
3.0 46 | 49193 | 50398 | 35 | 52857 | 55676 | 5.5676

3.0 48 | 51575 | 5.2154
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H M Min Max H M Min Max
1 1/2 1 1/2 1/2 1 1/2
()" | () ()" | (ug)”
3.0 5.0 5.3852 5.3852 3.75 3.8 3.8209 3.8209
3.75 3.9333 3.9582 4.0412
3.25 3.3077 3.3397 3.3397 3.75 4.0 4.0414 4.1473
3.25 3.4 3.4485 3.5148 3.75 42 4.2816 4.4497
3.25 3.4615 3.5191 3.6267 3.75 4.4 45092 4.6904
3.25 3.6 3.6731 3.8311 3.75 4.6 4.7257 49193
3.25 3.7692 3.8531 4.0668 3.75 4.6667 4.,7959 49932
3.25 3.8 3.8930 4.1082 3.75 48 49598 5.1381
3.25 4.0 41419 4.3678 3.75 5.0 5.1962 5.3104
3.25 4.2 4.3766 4.6128 3.75 52 5.4222 5.4772
3.25 4.3077 4.4979 4.7393 3.75 54 5.6391 5.6391

3.25 4.4 4.5995 4.8261 ‘
3.25 4.4615 4.6658 4.8834 4.0 4.0 4.0000 4.0000
3.25 4.6 4.8407 5.0092 4.0 4.2 42426 43128
3.25 48 5.0825 5.1857 4.0 4.4 44722 4.6043
3.25. 5.0 5.3134 5.3565 4.0 45 4.5825 47434
3.25 5.1538 5.4843 5.4843 4.0 4.6 4.6904 4.8579
4.0 475 48477 5.0249
35 3.5714 3.6055 3.6055 4.0% 4.8 49092 5.0794
3.5 3.6 3.6370 3.6568 4.0 5.0 - 5.1478 5.2915
35 3.8 3.8508 3.9965 4.0 5.2 5.3759 5.4589
3.5,_ 3.8571 3.9077 4.0883 4.0 5.4 5.5946 5.6214
3.5 4.0 4.0884 4.27.6 . 40 5.5 5.7009 5.7009

3.5 4.2 4.326 45259

3.5 4.4 4.5514. 4.7628 4,25 4.2941 4.3182 4.3182
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H M Min Max H M Min Max
1 1/2 1 1/2 1 1/2 1 1/2
() | ()" () | ()
4.25 43529 | 4.3858 | 4.4193 4.75 5.6 5.7025 | 5.7381
4.25 4.4 4.4392 | 4.4878 4.75 57368 | 58446 | 58446
4.25 4.6 46589 | 4.7687
4.25 47647 | 4.8326 | 4.9881 5.0 5.0 5.0000 | 5.0000
4.25 4.8 4869 | 5.0271 5.0 5.2 5.2345 | 5.2915
4.25 48235 | 4.8930 | 5.0525 5.0 5.3 53479 | 5.4129
4.25 5.0 5.1049 | 5.2413 5.0 5.4 5.4589 | 5.5317
4.25 51765 | 5.308 | 5.4232 5.0 5.5 5.5678 | 5.6303
4.25 5.2 53348 | 5.4428 5.0 5.6 5.6745 | 5.7271
4.25 54 |5.5552 5.6057 5.0 5.7 57793 | 5.8052
4.25 55882 | 5.7547 | 5.7547 5.0 5.8 5.8822 | 5.8822
4.5 45556 | 4.5826 | 4.5826 5.25 5.2857 | 5.3049 | 5.3049
4.5 4.6 4.6308 | 4.6545 5.25 5.4 54328 | 5.4644
45 46667 | 4.7021 | 4.7609 5.25 5.4286 | 54634 | 5.5033
4.5 4.8 48419 | 4.9397 5.25 5.5 5.5421 | 5.5869
4.5 48889 | 49328 | 5.058% 5.25 55714 | 56188 | 5.6694
4.5 5.0 5.0660 | 5.1962 5.25 5.6 5.6493 | 5.6970
4.5 5.2 52976 | 5.4038 5.25 57143 | 57694 | 5.8065
4.5 53333 | 5.4407 | 5.5377 5.25 5.8 5.8579 | 5.8725
4.5 5.4 55195 | 5.5915 5.25 58571 |  5.916 5916
4.5 5.6 57328 | 5.7502
4.5 56667 | 5.8022 | 5.8022 5.5 5.5455 | 55678 | 5.5678
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55 5.6 56263 | 5.6408
475 | 47895 | 4.8068 | 4.8068 55 56364 | 56647 | 5.6889
475 | 48 48177 | 4.8232 5.5 5.7 57319 | 5761
475 | 49474 | 4.9682 | 5.0472 5.5 57273 | 57603 | 57919
475 5.0 5.0317 | 5.1145 5.5 5.8 5.8357 | 5.8607
475 5.2 5.2648 | 5.3626 55 58182 | 58541 | 58774
475 | 52105 | 52766 | 5.3753 5.5 5.9 5.9376 | 5.9399
475 5.4 5.4880 | 5.5659 55 59091 | 59467 | 59467
475 | 54736 | 55677 | 5.6382

575 | 5.7826 | 5.7973 | 57973 | 5.75 5.9 59177 | 59295
5.75 5.8 58154 | 58198 | 5.75 5913 | 59306 | 59419
575 | 58261 | 58421 | 58532 | 575 | 59565 | 59746 | 5.9746
575 | 5.8696 | 5.8867 | 5.9013 6.0 6.0 6.0 6.0

Table 2
CONCLUDING REMARKS

We have calculated minimum and maximum values of Second order moment for the given values of

Harmonic mean and Arithmetic mean. Hence, we observe that:

1. for given values of H and My, the values of Second order moment are same at all existing points.
Similarly for given values of H and My, the values of Second order moment are same at all existing
points.

2 The value of Second order moment increases with Arithmetic mean for the fixed value of Harmonic
mean and decreases with Harmonic mean for the fixed value of Arithmetic mean.

3. Number of switching points decreases with Harmonic mean for minimum value of Second order
moment and number of switching points increases with Harmonic mean for maximum value of Second
order moment.

4. 1t is not necessary that a probability distribution exist for all values of prescribed moments. We need to
search such values. Any probability distribution lies in a feasible range of given moments. This feasible

range can be obtained by the information of maximum and minimum values of moments. If only one
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moment is prescribed then the feasible range of another moment can be obtained by Anju Rani [2] and if

two moments are given then the feasible range of third moment can be obtained.
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ABSTRACT

The present problem is concerned with the effect of heat transfer on MHD laminar flow
of an unsteady visco-elastic (Kuvshiniski type) liquid through porous medium with uniform
distribution of dust particles past an inclined plane under the influence of exponential pressure
gradient and mass transfer. The liquid is bounded by a parallel upper surface at a distance h Jrom
the plane. Analytical expressions for velocities of liquid and dust particles and concentration arel

obtained which are in elegant forms. It is observed that velocities of liguid and dust particles

increase with the increase in Permeability of medium (K,), Grashof number (G,) and Prandil

‘number (F,) for first half cycle, after it the effect of K,, G, and P, on both velocities is reversed for

second half cycle.
Keywords : Kuvshinski Fluid, Dusty fluid, Heat transfer, Mass transfer, Porous medium, MHD Flow.
INTRODUCTION

The problem of laminar flow of dusty visco-elastic liquid past an inclined pla.ne has become

very important in recent years particularly in the field of industrial and chemical engineering such as latex

particles emulsion paints and reinforcing particles in polymer. The study of these problems and rheological
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aspects of such flows have not received much attention although ‘his has some bearing on the problems of

petroleum industry and chemical engineering.

Saffman [8] has expressed a model equation describing the influence of dust particles on the
motion of fluids. Bagchi and Maiti [1], Kishore and Pandey [4], Marble [6], Mukherjee et al [7], Sharma
and D.ubey [9], Singh [10], Srivastava [11] and Vimala [13] using equations of Saffman [8] have
investigated a number of dusty gas flow problems in different situations. Mandal et al [5] have considered
unsteady flow of dusty visco-elastic (Kuvshiniski type) liquid between two oscillating plates. Chaudhary
and Singh [2] have considered the flow of a dusty visco-elastic (Kuvshiniski type) liquid down an inclined
plane. Johari and Gupta [3] have studied MHD flow of a dusty visco-elastic (Kuvshiniski type) liquid past
an inclined plane. Recently, Varshney et al [12] have discussed effect of porous medium on MHD flow of

a dusty visco-elastic liquid past an inclined plane with mass transfer.

In the present section we have considered the problem of Varshney et al [12] by introducjag
heat transfer through porous medium with mass transfer under the same conditions taken by Varshney et

al.

MATHEMATICAL ANALYSIS ’

Consider the laminar flow of an unsteady visco-elastic (Kuvshiniski type) liquid with uniform
distribution of dust particles past an inclined plane of inclination @to the horizontal. We choose the origin
of coordinate system at the bottom of the inclined plane. The x-axis is taken opposite to the direction of
the flow and along the greatest slope of the plane and y-axis is taken perperdicular to the plane. The
magnetic field of uniform strength is applied along to y-axis. Since both the dust and liquid particles move
along the greatest slope of the plane and the flow is laminar, the velocity of the both liquid and dust

particles can be defined by the following relations:
u, =uyn, %=, u,=0
v, =v,( 0, =i v,=0 w5 (1)

where (u, u,, u,), ( Vi ¥y Wy ) are the velocity components of liquid and dust particles respectively.
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Following Saffman [8] the equations of motion for the flow of dusty visco-elastic liquid

(Kuvshiniski type) through porous medium with heat and mass transfer are given by:

dx  dy?

(1 + ai)a—? =.—l(l_+ a-—a—)a—p + vﬂ-!-i‘gi[l + a%](vl —u)

2
-2y e~ gin0 + 8B(C,~C)+ B (1, 1)
1dp
——=—+gcosf@=0
p oy
1dp
S
p oz
ov, k
"E#="(”|_V1)
T _ _k oT
ot pC, 9y’
aC a’C
2Y = P
ot d)?

. (2)

s (3)

- (4)

% £3)

.. (6)

STy

where p is the pressure, v is the kinematic coefficient of viscosity of the gas, « is the coefficient of visco-

elasticity of the gas, k is the Stoke’s resistance coefficient, N, is the number density of the dust particles

which is taken to be constant,' p is the denstty of the liquid, m is the mass of a dust particle, fis the
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coefficient of mass expansion, B, is the coefficient of temperature expansion, D is the mass diffusivity, K

is the permeability of medium, k, is the thermal conductivity, C, is the-specific heat at constant pressure.

The initial boundary conditions are :

1<0; uJ=0=‘, C=C°, T=To at y=0
t>0; u,=0=y, g =L, =T at y=0
0, = C=C,—e¥, T=T —e at y=nh

We express the pressure p as
p=—pg(xs:‘n9+ycos€)—xpgo(:) . (B

With the help of equation (8), equations (2), (5), (6) and (7) become :

CAKL Pu E{V_( ﬁ_) -
(l+aat) = = F(x)+vay2 + r 1+aat (m~2)

o B? oV
= P) l*’1"1(_0"'»"1."' gBC+gh T e (9)
d k
a—:’ = ;(uI-v,) see (10)
T __k_on
18_“ pCP ayz a sea (11)
aC, 9%C,

5 oy ' .. (12)
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where C,=C,-C, T,=T —-T and F()= 1)+ ad@)

Corresponding boundary conditions are:

t<0; u=0=vy - C, =0, T,=0 at y=0
| t>0; #=0="1 C, =0, T,=9 at y=0
i u] = U Cl=e—1=l" Ti:e—lzl at y = h

Let us choose u,, v,, T\, C,and F(¢) as

- w (1) = u(y) e
n(pt) = v(y)er - (13)
L(pt) = Ti(y) e

Ci(yt) = Cu(y)e™ |

F(t)=ce |

Substituting the values of u, v, T|, C, and F(¢) in equation (9) to (12), we get :

u”+(A2—M§— 1 ) =-d-GC,-GT .. (14)
B k

= k—mkzu ses (15)

T + A" BT =0 - (16)

Chy+A2 S, Cy =0 ' ' . (17)
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: A2 Mm
A2 = Z(1-a22){1
where V( o ){+k—-mlz}’
, OB
M = n (Hartman number)
kN

M = To, (Dusty Fluid Parameter)

c
d= oy (Pressure parameter)

, (Modified Grashof number)

G = _g%, (Grashof number)
1 , |
Se = D’ (Schmidt number)
€ _
P = Pk—p , (Prandtl number)
I

The boundary conditions are :
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where

Solution of equation (14), (15), (16) and (17) under boundary conditions (18) is given by

u(y) = iCOS(PY) + M {U+%+ 2G =% 2G' - —%cos(p'h)} '
p : p- p~—q p-—-r- p

d G sin(gy) G, sin(ry)

" p? p—q?sin(qgh) p>—r? sin(rh) - {18)
v(y) = k—fm’tz [%COS(PJ’)-F-%:E% {U+%+ p2(fq2 + pl;(irz -%cos(ph)}
d G sin(qy) G, sin(ry)
p? Cpi-g? sin(qh)ﬂ pr-r? s:’n(rh)] - (20)
T = z::—gi; o))
n = % . (22)
r’ = A -ME - q> = S, A%, r2 = §, A2

K,’

The equations of velocities of the fiquid and dust particle, temperature and concentration are

expressed as
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d sin(py) d G G, d
=|—cos + U+—+ + it
U] l:pz (Py) sfﬂ(ph) pz pg_qg pz_rz p2 cos(ph)

_d__G sinley) G sin(m)]

k sfn(py){U+i+' G G,

= S d
[y I:Pz cos(py)+ sin|ph) - cos(ph)}

+
p: pP-q* p*-r® p

d G sin(gy) G S"”(”J’)] aciii

P p*—q sin(qh) p?—r? sin(rh) - (24)
sin(ry) .,
T = — -A%t
sin (rh) © . (25)
Sin(qy) ,
C = A2
: sin(qh) € ... (26)
The skin friction of liquid is expressed as
cz(aﬂ] _[_» {U+_‘i,+ G . G —icos(ph)}
dy y0 sin(ph) P> pr-q® p -1 p?
— G q _ G] r e‘p-’
p*—q? sin(qh) p*-r? sin(rh) -+ (27)
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RESULTS AND DISCUSSION

.» The Velocity Profiles for visco-elastic liquid and dust particles are tabulated in Table-1 and 2
and plotted in Fig.-1 and 2 having Graph-1to3at v=1,U=1,1=04, A=2, h=30, M= 1, mk = 0.2,
c=2,M=1a=02, G=2,8 =0.2 and different values of K,G, and P,

K, G, B
For Graph-1 10 2 0.2
For Graph-2 100 2 0.2
For Graph-3 10 4 0.2
For Graph-4 10 2 0.6

From the Graphs of Fig.-1 and 2 it is noticed that velocity of visco-elastic liquid and dust
particles are sinusoidal in nature. It is also observed that velocity of liquid and dust particles increases
with the increase in K, G, and P, for first half cycle, after it the effect of K, G, and P_on both velocities

1s reversed for second half cycle.

The temperature Profile is tabulated in Table-3 and plotted in Fig.-3 having Graph-1 for P, =

0.2 and Graph-2 for P, = 0.6 at ¢ = 0.4, A =2, h = 30. From Fig.-3 it is noticed that temperature is also
sinusodal in nature. It is also observed that temperature increases upto y = 1.7 with the increase in .,
after 1t temperature decreases upto y = 4 for first half cycle. This effect is reversed for second half

cycle.

. The skin friction Profile is tabulated in Table-4 and plotted in Fig.-4 having Graph-1 to 3. It is
concluded that skin friction decreases with the increase in t. It is also observed that skin friction increases

with the increase in K, G, and P,
PARTICULAR CASE
When G, and P, afe equal to zero, this problem reduces to the problem of Varshney et al [12].
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Table-1 : Values of velocity of liquidatv=1,U=1,t=0.4, A =2, h = 30,

M=1,mk=02,c=2,M,=1,0=02,G=2,S=0.2
and different values of K,, G, and P,

y Graph-1 Graph-2 Graph-3 Graph-4
0 0.00000 0.00000 0.00000 0.00000
2 0.40884 6.06504 5.49643 0.69170
4 -3.20352 -2.79073 -2.59727 -2.16592
6 192397 | -676466  -6.39870 | -2.23726
8 2.84232 2.53965 1.63867 0.80121
Table-2 : Values of velocity of dust particlesat v=1,U=1,t=04,A=2,

mk=02,c¢c=2,M,=1,0=02,G=2,5=0.2
and different values of K,, G, and P,

y Graph-1 Graph-2 Graph-3 Graph-4
0 0.00000 0.00000 0.00000 0.00000
2 2.04420 30.32518 27.48217 3.45848
4 -16.01760 -13.95365 -12.98633 | -10.82960
6 -9.61985 -33.82329 -31.99352 -11.18632
8 14.21158 12.69826 8.19336 4.00605

h=30,M=1,




GANITA SANDESH, Vol. 25, No. 1, ( June 2011 ) [ 65

VELOCITY PROFILE OF LIQUID

—6— Graph-1 —&— Graph-2 —A— Graph-3 —¢ Graph-4

e e

" Fig-1
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VELOCITY PROFILE OF DUST PARTICLE

40 4

—o— Graph-1 —8— Graph-2 —A— Graph-3 —%¢ Graph-4
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Table-3 : Values of temperature att=0.4, A, =2, h=30
and different values of P,

y Graph-1 Graph-2
0 0 0

2 0.198497 0.01437
4 -0.08555 -0.02872
6 -0.16162 0.043011
8 0.155212 -0.05723

T »

TEMPERATURE PROFILE
| —&—Graph-1 -5 Graph-2 |

Fig.-3




68 ] Nidhish Kumar Mishra,Debangana Rajput and N.K. Varshney / Effect of Heat Transfer on . .

Table-4 : Values of skin frictionatv=1,U=1, A =2, h=30,
M=1,mk=02,c¢c=2,M,=1,a0=0.2,G=2,S=0.2
and different values of K,, G; and P,

t Graph-1 Graph-2 Graph-3 Graph-4
0 6.48503 28.35128 25.82981 8.91044
0.2 2.91391 12.73905 11.60608 4.00372
0.4 1.30931 5.72402 5.21495 1.79899
0.6 0.58831 2.57197 2.34323 0.80834
0.8 0.26434 1.15566 1.05288 0.36321
1 0.11878 0.51927 0.47309 0.16320
| o SKIN FRICTION PROFILE
—o— Graph-1
—8— Graph-2 .i
—A— Graph-3 5
—¢ Graph-4
—f———=
0.8 1
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ABSTRACT

In the present paper, an inventory model is developed with a constant hazardous rate of two-parameter
negative exponential distribution. The production and demand rates are constant. Shortages are not
allowed. The average total cost is minimized to decide the production cycle and hence the optimum
inventory level and the time of production. The result is explained by various numerical e;:ampies with
graphs. 1t is clear that how the total cost minimizes in different situations.
Keywords: Finite production rate, hazardous items, inventory model, two-parameter exponential
distribution.
Mathematics Subject Classification (2000): 90B05.

1. INTRODUCTION

Inventory is defined as the stock of items to satisfy the future demands. Harris [S] developed the
mathematical model to decide the number of products at ones. He also gave the concept of economic order
quantity (EOQ). After him many mathematical models have been developed for controlling the inventory. In
several exciting models, it is assumed that the products have infinite shelf time. But actually deterioration
plays a vital role in inventory. Deterioration is defined as decay, spoilage, loss of utility of products etc. The
proceés of deterioration is observed in volatile liquids, beverages, medicines, blood components, sweets,
fruits and vegetables. There are many other p;oducts in the real world which deteriorate with a significant

rate. So it should not be neglected in the decision process of production lot size.
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In recent years, mathematical ideas have been used in diﬂ;erent areas in real life problems, particularly
for controlling inventory. When the items of the commodity are kept in stock as an inventory for fulfilling
the future demand, there may be deterioration of items in the inventory system.

At the end of the storage period, deterioration is studied by Whitin [9] for the fashion goods. Ghare

and Schrader [4] analyzed the ﬁmblem of decaying inventories exponentially and developed an EOQ model

with constant demand. Covert and Philip [3] cextended Ghare and Schrader’s model by considering a two
parameter Weibull’s distribution for variable rate of deterioration. Shah and Jaiswal [7] developed an order-
level inventory model for a system with constant rate of deterioration. Aggarwal [1] modified Shah and
Jaiswal’s model in calculating the average inventory holding cdst. Yang and Wee [6] developed an
integrated multi-lot-size production inventory model for detériorating item. Sharma et al. [8] developed a
deterministic production inventory model for deteriorating products with exponentially declining demand
and shortages. Baten and Kamil [2] studied the inventory management systems with two-parameter
exponential distributed hazardous items in wh}ch production and demand rates are constant.

Some commodities were observed to shrink with time by a proportion which can be approximated by
a negative exponential function of time. The probability density function of a two-parameter exponentiz;l

distribution is given by

1 -G
fGrpm) =ce 1 t2pn>1,
where p is the location parameter and 1) is the scale parameter.

The ufreliability function is given by

(t—p)

(Gpn)=1—e n.
The failure or hazard rate function of on-hand inventory is given by

< - Jun) _ 1
H(t p,m) = Fay = petZma> L

So the hazardous rate followed by the two-parameter exponential distribution is constant.

In this paper, the objective is to develop a mathematical model for obtaining an optimal production
cycle time for hazardous items associated with two-parameter exponential distribution during the cycle time
which minimizes the total cost per unit time of an inventory-production system. The conclusion is illustrated,

by numerical examples and graphs in various situations.
2. ASSUMPTIONS AND NOTATIONS

1. d is the rate of demand, which is known.

2. I(t) is the on hand inventory at any time t.
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3. Ris the finite production rate per unit time.
4, Htpm) = % is constant hazardous rate per unit time. It follows two-parameter exponential distribution.
5. C, is the production cost of one item.
6. C, is the inventory holding cost coefficient per unit time.
7. C, is the operating cost per order.
8. C is the average total cost per unit time
9. T is the time of one cycle.
10. t, is the time of production.
11. 1 is the maximum inventory level
12. Lead time is zero.
13. Shortages are not allowed.
14. The inventory system deals with only one item.
15. d,R, p, Cy, Co, C, I to, I; > 0; I(t), t > 0; R > d.
3. MATHEMATICAL MODEL
The differential equations describing the behavior of the system are given by
a0 R—d—%l(o for 0<t<t, e
and %=—d*ll(l)fort;$t§T .. (32
n
with boundary conditions [(0)=0,I(t)=1, and I(T)=0 ..(33)

The solution of above system is

t
n(R—d)(1—e“ﬁ),ostst1 ,
I(t) = -9 , : (34
. nd(e n —1), t; <t<T

With I, = n(R—d) (1 - £n‘) _.(339)
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R/ &
and T=n-log [E(eﬂ - 1) + ll - .. (3.6)

In\;entorv i

t, T |
Time

Figure (3.1)

Neglecting the terms containing 1 with degree greater than or equal to 2, we have

(R—d)(t—-;—:), 0<t<t,
I(t) =

d((T-t)+%), t, <t<T.

The inventory holding cost for one cycle is
T
HC = Gy J' o
0
Using equation (3.7), we get
C
HC = 2[R = d)@ne = 1) +d{3n(T — £ + (T = t2)°)]

The number of units produced in time t; = Rt
The production cost per production run is

" PC=CyRty

.. G
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The set-up cost per cycle is
SC=0G,
The total cost for one cycle of time T is

TC =HC+ PC+ SC

Hence the average total cost per unit time is

TC
=~
C CpRt
= 2 [R-d)ENE - ) +dBNT - ) + (Tt + 22+ 68)
By equations (3.6) and (3.8), it is clear that C is a function of only one variable t;.
2 i dc _ d?c dc _
For C to be minimum, o 0 and 7o >0. By o 0, we have
| R/ 4 )
3n [Chd{(R — d)(2n - t)t; + 2nC,R} e 1 Jd
. R/ 4
+ Chd(R=d)(2n+ T —t,)(T - tl)] log {-& (e“ = 1) + 1}
B
—R[CL{(R—d)(Bn —t)t;? +d(Bn+ T —t)(T —t)?} +6n(CpRe; + Co)]e_ﬂl
=0 ’ (3.9)

Solving equation (3.9) by Newton-Raphson method, the value of t, is obtained numerically up to
2

desired accuracy. That value of t;, by which % > 0, gives the minimum value of C. Hence the optimum
1

values of the cycle time T, inventory level I, and minimum average cost are obtained.

4. NUMERICAL EXAMPLES

1. Let us consider the values of parﬁmeters d = 6 units/week, R = 16 units/week, C, = § 16/unit,
1

C, = $240/set up, C, = $ 4 per unit per week, H === 0.06. Then the following results were obtained ,

n



-
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from our inventory model: t, = 2.05 weeks, T = 4.99 weeks, I, = 19.3 units and minimum C = §

191.43. The inventory level I(t) at any time t is shown in figure 4.1.

Time

- Flg“re _41

2. For d = 8 units/week and other values same as example 1, the results are t; = 2.66 weeks, T = 4.96
weeks, [} = 19.68 units and minimum C = $ 225.33.

3. For R = 20 units/week and other values same as example 1, the results are t;, = 1.54 weeks, T = 4.65

weeks, I} =20.57 units and minimum C = $ 197.67.

4. For C, = § 12/unit and other values same as example 1, the results are t; = 2.11 weeks, T = 5.12

weeks, 1) = 19.8 units and minimum C = § 165.11.

5. For C, = $180/set up and other values same as example 1, the results are t, = 1.76 weeks, T = 4.33

weeks, 1, = 16.69 units and minimum C = $ 178.56.

6. For C,, = § 2 per unit per week and other values same as example 1, the results are t, = 2.72 weeks,
T = 6.44 weeks, I, = 25.07 units and minimum C = § 169.88.

7. For d = 8 units/week, R = 20 units/week and other values same as example I, the results are
t; = 1.92 weeks, T = 4.44 weeks, I, = 21.75 units and minimum C = $ 235.64.

8. For R = 20 units/week, C, = $180/set ut) and other values same as example 1, the results are
. t; = 1.32 weeks, T = 4.04 weeks, I, = 17.76 units and minimum C = $ 183.88.

9. For d = 8 units/week, R = 20 units/week, C, = $180/set up and other values same as ex. 1, the results
are t; = 1.65 weeks, T = 3.85 weeks, I; = 18.82 units and minimum C = § 221.i5.
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10. Taking different values of H and constant values of other parameters same as in ex. 1, the results
are shown in the table 4.1 and figures 4.2, 4.3 and 4.4.

I
| " Table 4.1
|
| _
Ca Ch Cp R |d H t1 T C(T) Iy _
240 | 4°| 16|16 | 6 | 0.04 | 2.07 | 5.18 | 188.07 | 19.88 § 3}3 y
|_ 240 | 4 | 16|16 | 6 | 0.06 | 2.05 | 499 | 191.43 | 1930 F 205 -
240 | 4 | 16|16 |6 | 0.08 | 2.03 | 4.83 | 194.66 | 18.78 2 200
246} 4 | 16|16 | 6 | 0.10 | 2.02 | 468 | 197.77 | 18.29 %":gg L |
240 | 4 |16]16]6|0.12|201 | 45520076 | 17.84 | = Z g5 (o
240 | 4 [16]16 | 6. 0.14 | 2.00 | 444 | 203.65 | 17.43 | | 0.04 0.08 0.12 0.16 020
| 240 | 4 [16] 16| 6] 0.16 | 1.99 | 433 | 206.45 | 17.04 | | Hazardous rate
240 | 4 | 16|16 | 6 | 0.18 | 1.98 | 4.24 | 209.15 | 16.68 | !
' 240 | 4 |16] 16| 6] 020 198 | 41521177 | 1634 | Figure 4.2
;
A S
6 - B % 20 ;
. 19 -
! g’ L 18
= I T '_
| gy 16
I 0.04. 008 0.12, 0.6 020 L 004 008 012 016 020
| Hazardous rate t - Hazardous rate l
| Figure 4.3 Figure 4.4 .

. 5. CONCLUSION

In this paper a mathematical model is developed with exponential distributed hazardous items which

include finite production and constant demand rates. The average total cost per unit time is minimized to

decide the production cycle time and hence the optimum inventory level. The average cost C increases when
demand rate increases although it will be profitable. C also increases when production rate increases because
time for deterioration increases but in this casg operating cost will be less, so it will be a profitable case. It is
obvious that C increases when operating, holding and production costs increase. When hazardous rate

increases, then the average total cost increases, inventory level, production and cycle times decrease.
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ABSTRACT

In this paper an epidemiological SIS model with standard incidence is presented. It has been observed
that many of the diseases reduce the fertility of mother due to the infection. A fertility reduction factor is
introduced. Model we present here includes vital dynamics influenced by disease and vertical transmission. A

reproduction number has been obtained.
Key Words: Carrying Caﬁacity, Vertical Transmission, Stability, Reproduction Number
[2000] Mathematics Subject Classifications: 92 D 30

1. INTRODUCTION

The stability and behavior of solutions of an infectious disease transmission model depends not only on
the epidemiological formulation but also on the demographic process which has been incorporated in the model.

A demographic model with density dependent restricted population growth is given by the logistic equation
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where N is the total population, r is the growth rate and K is the carrying capacity of the environment.

Anderson and May [1] proposed a variety of models for infectious disease with varying population sizes.
Various aspects were contributed through different models by Mena Lorca [8], Eldestein [3] and Hethcote [4]. A
brief description of the dynamics of vertically transmitted disease was discussed in Busenberg [2].

Using generalized logistic rate the vertical transmission models on infectious diseases were explained by
Khandelwal and Singh [6, 7]. A vertical transmission model with normal death rate and with fertility reduction
was suggested by Zinshi Zhou [8]. Here we have analyzed an SIS model considered by Zinshi Zhou [8] with

. : N , -
standard incidence and generalized death rate (m +ar-E) where ‘a’ is convex combination constant.

2. FORMULATION OF THE MODEL

The transfer diagram of the model is

b[X +peY] 5Y be(1-p)Y
susceptible | AXY/N | infected
N N
—)X ' +m+ar—)Y
(m-+ar ) (o m <

In this compartmental model the total population N(t) has been divided in two compartments, first is X(t)
of susceptible and second is Y(t) of infectious. Here r is population growth rate=b-m>0, where b and m are the
natural birth and death rates respectively. K is the carrying capacity of the population. A is the contact rate. The
fertility of the susceptible is b and of infective is be with € in [0, 1], so that the € is the fertility reduction factor
due to infection. Assume that the new born of infective women are susceptible with the probability p and are
infective with (1-p) probability. Thus (1-p) is the probability of the vertical transmission from mother to her
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newborn baby before, during or just after the birth. 3 is recovery rate constant and a is the rate of death due to the
infection.

The transfer diagram leads to the following differential equations:

| = b[X +peY]- (mw---)x-’“XTY 5Y D
| dy AXY N
= —T+bs(l )Y-—(8+a+m+arﬁ)‘{ ....(2.2)
dN N |
T =[-2 IN-{a+b-e)} Y . (23)

| Since X+Y=N, only two equation of the above system are independent. Reformulating equations (2.2)
and (2.3) in terms of the fractionsS =% ,I_=% » S+l =1,and put a+b(l—-€)=a, toget

:—f- (e, = A)l + (A - 5 - &, - bep)] 24
dN N
B Nr-ar Y -a] @9

Setting -t'he time derivatives of I and N equal to zero we get

(e, —A)I+(A~8-0t, ~bep)] =0 .(26)
N_[r—ar-]i— a,l]=0 s (2:7)
K
From equation (2.6) we get
A-3-a,-bep

either I=0 orl=
l"'ﬂq

‘At disease free stage, from equation (2.7) we have

either N=0 orN=-IaS-

So we get the diseases free eq.uilibrium points
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E,(1, Y, =(0,0) and E, ('xz,vz)=(o,§)

There is an endemic equilibrium in (I, N) plane,
For the endemic equilibriﬁm point in equation (2.7), we put

_A-8-a,—bep

I=1
? A-o,

to get ... (2.8)

Ny 12
a g

Solving we get,

=l{_[(r‘“n)(l‘“al)+0t,(6+bsp)

N; ra A-a,)

] .. (2.9)

Thus we have the endemic equilibrium point

A—0—a, —bep K. «o
E,(I,,N,) where I, = . and N, =—[1-—] .
3( 3 3) .3 x_(!-' 3 a [ rl 3]
3. STABILITY ANALYSIS

For the study of the stability of the equilibrium points the variation matrix of the above system is
2l(a, =A)+(A -8 -, —bep) 0

J= N
-ou,N ;—ZarE—a,I

The value of the J at the point E; (0, 0) is

A-0-a,~bep 0
h= 0 r

The Eigen values are

Y, =A-3—a,—bep and y, =r
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Clearly one Eigen value v, is positive, so the equilibrium point E; is an unstable point.
At the equilibrium point E, (0, K/a) the value of Jacobian is
A-8-a,—bep 0
J, = K

ey T
a

Here the Eigen values at this point are
Y, =A-8-a,-bep and y,=-r

Clearly one Eigen value y, =-r is negative and so the point will be stable if the other Eigen value , is
negative i.e. if L —8~-o, —bep <0 is satisfied. Put the value of «, to get the condition as

A-[aa+b-be+8+bep) <1

This turns in
A+be(l1-p) <1
a+b+d
Thus we get
R, = M .This is called reproduction number.
o+b+d

Hence the diseases free equilibrium point E; is stable if Ry <I.

At the endemic equilibrium point Es, the variation matrix is

-(A=38-a,-bep) 0
I, = i Kir-a)A-a)+ad+ bep)] T — o, (5 + bap)]
ra (A-0a,) (A-a,)

The Eigen values of the above variation matrix are

o, (8 +bep)

e s S e

]

To get the signs of the above Eigen values negative we must have
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(A-5-a,-bep)>0and (r-«,)>0 where a+b(l-&)=q,

Hence we conclude that for the stability of the endemic equilibrium point E; we must have following
conditions

_ A+be(l-p)

>1 and r > a+b (1-g).
a+b+d
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