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SRINIVASA RAMANUJAN - THE MAN

M. K. SINGAL *

Srinivasa Ramanujan, the greatest mathematical genius produced in India in the modern times, was born
on Thursday, the 22nd December 1887, at Kumbhakonam in Tamil Nadu. His mother Komalammal and father
Srinivasa Aiyanger were devout Hindus. They were worshippers of Goddess Namagiri of Namakkal in Salem
District. It is said that Ramanujan was considered by them as a gift of goddess Namagiri to whom they had
offered f)rayers for this purpose. The parents were orthodox Vaishnavites and since Shri Ramanuja Acharya, one
of the best propounders of Vishisht Advaita Philosophy, was also born on a Thursday, the child was named

Ramanujan after him. His mother used to fondly call him Chinna Swami (which means “little Lord").

Ramanujan had his early education in Kumbhakonam, the Prayag of the South, for it is the only place in

South where a Mahamakham (a function resembling the Kumbh Mela) is held once in 12 years.

Ramanujan had earned a name for mathematical ability even as a child. He had read Loney;s trigonometry
while he was still a student of the 8th class. Around this time he came across Carr's Synopsis of elementary results
in pure and applied mathematics published in 1880 by an Englishman named Carr, a private teacher in London.
The book contained the g;tatements- of about 6,000 (6165 to be precise) results in various branches of mathematics.
This book had a profound influence on the éubsequent development of Ramanujan because the book contained

only the results and had no proofs. The proofs were worked out by him independently.

" He passed his matriculation examination at Kumbhakonam at the age of 16 and secured Junior
Subl;amanyam Scholarship for further study ét the Government College at Kumbhakonam. He was so much
engrossed in mathematics that he hardly paid any attention to any other subject with the result that he failed in
English at the first examination and lost the scholarship. This made him leave Kumbhakonam, first for
Vishakapatnam and later on for Madras, where he appeared at the first examination in arts in December 1906. As
luck would have it, he failed and never attempted to pass this examination again. He spent the next few years
studying mathematics independently. On the 14thJuly 1909 he got married to Janaki and it became hecessary for

him to search for some permanent employment for he had not only to support himself but also his wife. While
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searching for a job he met Diwan Bahadur R. Ramchandra Rao, the then Collector of Neliore, a small town, some
125 kilometers north from Madras. Diwan Ramchandra Rao was a great lover of mathematics and he was very
much impressed by the two bulky note books shown to him by Ramanujan in which he used to write down his
theorems. The best description of Ramanujan's first meeting with Diwan Bahadur is in his own words : "Several
years ago a nephew of mine, perfectly innocent of mathematical knowledge said to me; 'Uncle, I have a visitor
who talks of mathematics ; I do not understand him. Can you see if there is anything in his talk?" And in the
plenitude of my mathematical wisdom, I condescended to permit Ramanujan to walk into my presence. A short
uncouth figure, stout, unshaved, not over clean, with one conspicuous feature—shining eyes—walked in with a
frayed note-book under his arm. He was miserably poor. He had run away from Kumbhakonam to get leisure in
Madras to pursue his studies. He never craved for any distinction. He wanted leisure; in other 'words, that

simple food should be provided for him without exertion on his part and that he should be allowed to dream on.

"He opened his book and began to explain some of his discoveries. 1 saw quite at once that there was
something out of the way; but my knowledge did not permit me to judge whether he talked sense or nonsense.
Suspending judgment, I asked him to come over again, and he did. And then he had gauged my ignorance and
showed me some of his simpler results. These transcended existing books and I had no doubt that he was a
remarkable man. Then, step by step, he led me to elliptic integrals and hypergeometric s;ries‘and at last his
theory of divergent series not yet announced to the world converted me. | asked him what he wanted. He said

he wanted a pittance- to live on so that he might pursue his researches."

Ramchandra Rao was so much impressed by Ramanujan that he supf)brted him for some time, .but'
Ramanujan was not willing to live on somebody's help indefinitely. He also tried to obtain some scholarship but

without success.

In 1912 he got a job of an officiating clerk in the Accountant General's office from 12th January to 21st
February on a meager salary of ¥ 20 per month. On Ist March of the same year he accepted an appointment in
the office of the Madras Port Trust on a salary of ¥ 30 per month.

While at the Port Trust he received encouragement from the Manager of the~Trust, Narain lyer and

- Chairman of the Trust, Sir Frencis Spring. There were several other people as well who were highlyl' impressed

by Ramaﬁujan‘s capabilities. These included Professor Middlemax, Principal and Professor of Mathematics,
Presidenoy Collgge, Madras, Professor L.T. Griffith, Professor of Mathematics in Govemmenil Engineering
College Madras, R T. Bourne, Director of Public Instructions, W. Graham, the Accountant General of
Madras, and Sir Gilbert Walker, Director General of Observatories in Simla who was on a visit to Madras. Sir

Gilbert wrote a letter to Francis Didsbury, the then Registrar of the University of Madras recommending

[ .

[ ORI P e T o

& -.'L“-.—-J.'L ; & hd_... 1'



A L . W g R g ¥ e g -

M. K. SINGAL / Srinivasa Ramanujan - The Man | 3

him to provide a place to Ramanujan in the University for a few years before he could be sent to England for
higher studies. Walker's letter had the desired effect. The Madras University granted him a scholarship of
T 75 per month for two years. This was communicated to him in a letter dated the 9th April 1911. He was
granted leave for two years by the Port Trust and with effect from the 1st May, 1913 Ramanujan joined the
University at Madras as the first research scholar of the University (It is only befitting that the Government of
India set up the Ramanujan Institute of Advanced Study in Mathematics in the early fifties and the Institute is

now synonymous with the Department of Mathematics of Madras University.

On the suggestion of Mr. Sheshu Aiyer, Ramanujan wrote to Professor G.H. Hardy at Cambridge. His
letter to Hardy dated January 16, 1913 ran as follows :

" "Dear Sir,

I beg to introduce myself to you as a clerk in the Accounts Department of the Port Trust Office at Madras on a
salary of only £ 20 per annum. 1 am now about 23 years of age. I have had no university education but I have undergone the
ordinary school course. After leaving school I have been employing the spare time at my disposal to work at Mathematics. 1
have not trodden through the conventional regular course which is followed in a University course but | am striking out a

new path for myself. I have made a special investigation of divergent series in general and the results [ get axe termed by the

- local mathematicians as 'startling’.

- " I'would request you to go through the enclosed papers, Being poor, if you are convinced that there is anything of
value I would like to have my theorems published. I have not given the actual investigations nor the expressions that [ get but

I have indicated the lines on which I proceed. Being inex;':_'erienced I would very highly va'{ue any advice you give me.
Requesting to be excused for the trouble I give you,
I remain, Dear Sir, Yours truly
. S. Ramanujan",

Along with this letter he enclosed about 120 theorems. Hardy took pains to go through the results sent by
Ramanujan and congrat;lated him at his work. Hardy sent him an invitation to come to England. On the 17th
March 1914 Ramanujan sailed for England. After 27 days of journey on the ship, he reached England where he
was welcomed by Professor E.H. Neville whom he had already met at Madras. On the 18th of April 1914 he

joined as a research scholar at an annual scholarship of £ 250.

In 1916 Ramanujan was awarded the B.A. degree of the University of Cambridge on the basis of his

research work. While in England Ramanujan was honoured in more ways than one (though no honour could be
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too? big for a mathematician of Ramanujan's calibre!). In 1918 he was elected a Fellow of the Royal Society. He
was the first mathematician whose name was accepted for Fellowship of the Royal Society at the first proposal.
In the same year he was elected a Fellow of the Trinity College, Cambridge. He was the first Indian to have been
so elected. Ramanujan lived in England for five years. These were the most fruitful years of his life. He

collaborated with Hardy and Littlewood to produce some of the most outstanding work.

In 1917 Ramanujan fell ill and had to be admitted to a nursing home. The illness grew from bad to worse

and it was decided in 1919 the he should be sent back to India where the warm climate might help in his recovery.
But alas, that was' not to be! He arrived in Madras on the 2nd April, 1919 and passed away a year later, on the
26th April 1920 at Chetpet near Madras. Even on his death bed he devoted himself completely to Mathematics
and produced research work of the highest order, a glimpse of which he communicated in his last letter to Hardy,

but most of it remained unnoticed till it was discovered accidentally by George Andrews in 1976.

During the last quarter of the 20th century, there have been many admirers of Ramanujan, of whom three

American mathematicians-Professor George E. Andre of Pennsylvania State University, Professor Bruce C. Bernd
t of the Uﬁiversity of Illinois, and Professor Richard Askey of the University of Wisconsin, Madis on Wisconsin,
stand out head and shoulders above the rest. Through their enthusiasm determination and herculean efforts, each
in his own way, they have succeeded in giving a fresh impetus to work in the areas which were of interest to

Ramanujan.

Professor George Andrews, a student of Prof. H. Rademacher, wrote his Ph.D. thesis on 6 -functions,

During the summer of 1976, Andrews while looking through the old papers of the late Prof. G.N. Watson!,'

accidentally came across some 140 she etc in Ramanujan's own handwriting and containing some 600 formulae.
This was the work that Ramanujan did in the last year of his life after returning to India. Andrews has since then
been working on them and has written extensively on the material contained therein. But for Andrews, this

important work might never have seen the light of the day.

Prof. Bruce Berndt started the work of editing Ramanujan's Note-books around 1977 a work which

Hardy, Wilson and Watson thought of (and tried to some extent) but left for one reason or the other. During ten L

years Berndt has devoted him self solely to this stupendous task. His efforts have resulted in the publication of
number of papers and a volume entitled 'Ramanujan's Note-books 1 published by Springer-Verlag. The

subsequent volumes were ready and likely to be out soon at that time.

Richard Askey paid his tribute to Ramanujan in a very different way. It was Askey's enthusiasm and

effort which was solely responsible for requesting Paul Garlund, sculptor-in-residence at Gustayus Adolphus
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College at Saint Peter, Minnesota USA to prepare a bronze bust of Ramanujan. The busts commissioned are at
Mrs. Ramanujan's residence, Madras; Raman Research Institute, Bangalore ; Department of Defence,
Government of India, New Delhi ; Tata Institute of Fundamental Research Bombay: Trinity College. Cambridge;
Askeys, Madison (Wisconsin) US/ Chandrasehars, Chicago, USA.

The bust now at Mrs. Ramanujan's residence was presented to her on the 11th May 1984 at a ceremony

held at the Ramanujan Institute for Advanced Study in Mathematics, Madras.

The bust now at Raman Research Institute was presented to the Indian Institute of Science by Prof. S.
Chandrasekhar and Mrs. Lalitha Chandrasekhar at a ceremony held at Raman Research Institute on the 6th

February 1985. The following massage from Richard Askey read out on the occassion gives the story of the bust:

“In the spring of 1976, Andrews went to Europe for a meeting and stopped in Cambridge to see what old

manuscripts he could find. One find was not a manuscript but 140 pages of formulas in Ramanujan’s handwriting.

The story of the thread from these sheets to the bust is simple. Andrews has done a lot of very deep work
trying o understand what Ramanujan discovered. Eventually 'The New York Times' heard about it and interviewed
him. 'The Hindu' followed with a more extensive interview and also published an interview with Ramanujan's
widow, Janaki Ammal. She lamented the fact that a statue of Ramanujan had never been made, altﬁough one had
been promised. Andrews sent me copies of these interviews, and after a few months my subconscious mind
finally got through to my conscious mind and it was clear that a bust should be made. Since Janaki Ammal was
80, time was important, so it was upto individuals rather than government or societies, since institutions move
slowly. My first reason for wanting a bust was simple; if Ramanujan's widow wanted one she should have it.
That was the least we could do to show our appreciation of Ramanujan to some one who had been a great help to
him, Later | realized there was a second reason, which Janaki Ammal must have realized all along. She knew
Ramanujan, and while she did not understand his mathematics, she knew he was one of the few whose work will
last. As long as people do mathematics, some of Ramanujan's work will be appreciated. Fame is a strange thing
and is often fleeting. An interview on a television programme is now the accepted form of honour. In
Ramanujan's case a permanent memorial is appropriate. One which can be appreciated by those who do not

understand his mathematics should be added to the memorial Ramanujan made for himself with his work.

I am pleased to have played a role in this, and would like to thank the more than one hundred
mathematicians and scientists who contributed money for the bust which was presented to Janaki Ammal. The
bust being dedicated today was donated by a couple who are now friends, Subramanyan and Lalitha

Chandrasekhar. When 1 asked Chandra about the appropriateness of a bust of Ramanujan, he immediately replied
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that it was a good idea and they would do all they could to help. They did. Finally. [ want to thank the sculptor,
Paul Garlund".

The bust whiéh is at Cambridge was unveiled on 27 May 1986 in the library of the Department of Pure

Mathematics and Statistics in Mill Lane, Cambridge, by Professor Richard Askey, who as a part of his address

read out a message from Mrs. Ramanujan and an appreciation composed by the distinguished physicist. Professor

S. Chandrasekhar, of Ramanujan's influence on the development of science in India. The ceremony was preceded

by a lecture on 'Ramanujan today’ given by Professor R.A.Rankin.

(1)

(i)

(iif)

(iv)

Our main sources for Ramanujan's research contributions are the following :
The three quarterly reports submitted by him to Madras University.

His 37 published papers, and the 58 questions and solutions contributed by him to the Journal of the
Indian Mathematical Society. These are to be found in the Collected Papers published by the Cambridge
University Press. Out of these 37 papers, only 5 were published in the Journal of the Indian Mathematical
Society before Ramanujan left for England. Seven of the remaining 32 papers were written in

collaboration with Hardy. Ofcouse, all the 32 research papers were edited by Hardy.

-l

Ramanujan’s Note-Books. A fascimile edition of Ramanujan's Note-Book; was brought out by the Tata
Institute. of- Fundamental Research in 1957 at the suggestion of Sir K. S. Krishnan, Professor
T. Vijayararaghavan anc Professor P. L. Bhatnagar to Professor K. Chandrasekharan during the (Indian
Mathematical Society Conference held at Delhi in December 1953 and with financial support from Sir
Dorabji Tata Trust.

The Lost Note-Book. Discovered by Professor George E. Andrews in 1976 among the papers of
Professor G. N. Watson, and published in 1987 by Narosa Publishing House, New Delhi.

The following tribute to Ramanujan by Bruce C. Berndt is worth recording :

"Because of the unique circumstances shaping Ramanujan's career, inevitable questions arise about his

greatness.

L]

Here are three brief assessments of Ramanujan and his work:
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Paul Erdos has passed on to us Hardy's personal ratings of mathematicians. Suppose that we rate mathematicians
on the basis of pure talent on a scale from 0 to 100. Hardy gave himself a score of 25, Littlewood 30, Hilbert 80

and Ramanujan 100.

Neville began a broadcast in Hindustani in 1941 with the declaration "Srinivasa Ramanujan was a mathematician
so great that his name transcends jealousies, the one superlatively great mathematician whom India has produced

in the last thousand years.

In notes left by Wilson, he tells us that George Polya was captivated by Ramanujan's formulae. One day
in 1925 while Polya was visiting Oxford, he borrowed from Hardy his copy of Ramanujan's Note-books. A
couple of days later, Polya returned them in almost a state of panic explaining that however long he kept them, he
would have to keep attempting to verify the formulae therein and never again would have time to establish an

original result of his own.

To be sure; India has produced other great mathematicians, and Hardy's views may be moderately biased.
But even though the pronouncements of Neville and Hardy are overstated, the excess is insignificant, for

Ramanujan reached a pinnacle scaled by few."

So long as our planet continues to exist in the Universe, and so long as civilization exists ol our planet,
Ramanujan will be remembered not only because of the outstanding research contributions made by him to
Number Theory and Analysis, not just because his work has kept first-rate mathematicians busy for nearly ninty
years even after his death, not merely because his work has had a tremendous influence on modern mathematics
and has opened up new vistas for research, but also because he was able to do so without any formal training,
without any means of support, and more so because he continued to produce work of the highest order even in the

face of death.
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KOBER OPERATORS IN THE MATRIX CASE FROM A STAl 1STICAL
POINT OF VIEW

AM. MATHAI
Centrefor Mathematical Sciences
[ Arunapuram P.O., Pala, Kerala - 68674, India] and
Department of Mathematics and Statistics,
McGill University, Montreal, Quebec, CANADA, H3A2K6

ABSTRACT

We look at Kober fractional integral operators in the matrix case in this article as the densities of a
product and a ratio of two real positive definite matrix-variate random variables X, and X,, which are

statistically independently distributed. We look at the density of the product U, = XY2x, x)/* and the density
of the ratio U, = XY2X7'x}/2. We examine matrix-variate Kober fractional integral operators of the first
and second kinds from a statistical perspective. We derive the densities of products and ratios where one
variable has a matrix-variate type-1 beta density and the other variable has an arbitrary density. Generalizations
by using pathway models, by appending matrix variate hypergeometric series etc are considered. Matrix-

variate Saigo operator and other operators are also defined and properties studied.
1.INTRODUCTION

All the matrices appearing in this article are p x p real symmetric and positive definite. The following

standard notations will be used. X > O means the p  p real matrix is symmetric, X = X', and further, it is positive
definite. |4| means the determinant of 4, tr (4) = trace of A, dX will stand for the wedge product of differentials in any

matrix X. If Xis p x g with X = (x,-j) then

dX =dx;; Adxjy A...Adxp, for ageneral matrix (11

= Hndx,-j = HAdx,-j when X = X' or when X is symmetric  ...(1.2.)
i2j j2i

Also -[X f(X)dX will mean the integrals over all X (need not be symmetric or even square) of a real-

valued scalar function f(X) of matrix argument X, In the same format
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[y 7ar=f, . r(r)ar

will mean the integration of a real-valued scalar function of the real positive definite p x p matnx Y over the space of
positive definite matrices such that4 >0, ¥> 0, Y-4 > O, B> -Y'> O where 4 and B are p x p constant matrices.
The notation will then imply that if O < X < I then all eigenvalues of X are in the open interval (0, 1). We will need
some Jacobians of matrix transformations in this paper. Forfuﬂher results on Jacobians and for many applications,
see Mathai (1997).

Y=BXB', X=X, [B|#0=dy=|B"*" ax (13)

—2p .
X dX for a general Y
Y=Xl=4g7-= I | 8

IXI_(pH)dX for X = X' ..(1.4)

We will denote the unique positive definite square root of a posmve defi mte matrix Xby x'/2.The following

standard property will be used very often in this article. For p * p nonsingular matnces Aand B

|1+ 4B|= |1+ Bd|= |4]| 47" £ B| = |B][37" £ 4| (when nonsingular)
|7+ 4B| = |1+ 42842 = |1+ B2 48| (when positive definite)...(1.5)

The real matrix-variate gamma function, denoted by T p (), is defined as follows which has an integral

representation when R(a) > %‘1.
p(p-1) = 4
T,(0)=n 4 I"(a)l"(a - —;})..I‘(a - %—-»), R(a) > 2=
1
=[ 0| X7 e ®Oax, R(e)> 2L ..(1.6)

The real matrix-variate type-1 beta density for the p x p positive definite matrix X, 1> With parameters ¢ and

B and denoted by f; (X ), is the following :

fi(X) = T"_%L'Xlluzﬂwf XI|B_2 0< X <1
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Ip(o+p _p#l
fH(X) = —(()-—-—-—|X2[B 2 |I- X2|°‘ 2 dXy, O<Xy<1
p :

For R(a)> p;‘, R(B) > — and f(X;)=0, f,(X;)=0 elsewhere. Type-1 and Type-2 beta

integrals and beta functions are defined and denoted as follows for R(o) > PT_' , R(B)> pT_' :

Tp()Tp(B)

Bp(a’ )= Fp(u+B) JO<X|<! | IIG_P_

_ptl
-xP7ax;,  (ype-1)

pl
=j0<x2¢; X 2|ﬁ |1 X[ £3 dX,  (type-1I)

=Ix3>o |5 [* T |I+X3|_ P ax, (type - 2)

e ~
= x>0 I‘X‘*ll3 |1+ Xy (Mﬂ)dxni (type - 2)...(1.7)

2. KOBER OPERATOR OF THE SECOND KIND FOR THE REAL MATRIX-VARIATE CASE

The following definition, given by this author earlier, will be used here.
Definition 2.1. Kober operator of the second kind for the real matrix-variate case is defined and denoted as

follows :

o xP -2 p-a . -
K (0) = 2 o 1= 2E T TP ), () > 257 o

Consider two p x p real matrix-variate random variables X and X, , independently distributed, where X

: § 1 .
has a real matrix-variate type-1 beta density £; (X;) with parameters (P + 22:- (1) , that is,

l"p(|::+or.+£ﬂ

T o+ 5511 (o

) n
fl(X])—- |)(l|p|1—.fl|Ot 2, O<X|<I_
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for R(p) > -1, R(a)> £~ p"l and £;(X;) =0 elsewhere. Let X, have an arbitrary density f(X).

Then the joint density of X, and X, is fi(X;)f(X,). Let us consider the transformation

U=xy2x%x)% X, =V so that X, =V, X;=v""2ur~"2 and the Jacobian is given by

+1
dX, NdX, =|V["T dU ~av .Ifthe joint density is denoted by (U, V') then

Fp(p+a+i’;—')

l“p(a)l‘(p-i-f’z—”)l

f(UV)dU ~av = V'”ZUV‘”ZF

_p#l I
X ]1 - V"”UV"”]“ 2 f(V)|V|_£2+_ dU nav.

Therefore the marginal density of U, denoted by g (U), is available by integrating out V from f (U, 7). That

gU) =], A(v"2ur ) ()M av

I‘P(p+a+="—ﬂ) pal

rpfp+ 5t ¥ T e

1 1
<P WPV v - ul"5 f(r)ar

i (o.+p+"’*')
o)

Hence we have the following theorem :

Theorem 1. When X, and X, are independently distributed p x p positive definite real mairix random

variables and when X, =V and U = X32x,x}? or x, =v="2uy=Y2 and when Xj has a real matrix-
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variate type-1 beta distribution with the parameters (P * PZLI,G) and if g(U) denotes the density of U then

rp(""'%‘l)

Fp(a+p+%'—')

g(U)=K{*f (V) (22)

is Kober fractional integral operator of the second kind for the real matrix-variate case.
As a special case of (2.2), or independently, we can derive a result for the right sided Weyl operator for the

real matrix-variate case. Let the right sided Weyl fractional integral operator be denoted by (x w22 f ) (X) with
infinity here signifying that 7— X is positive definite.
Theorem 2. Let X, X,,U,V be as defined in Theorem I. Let X, have a type-1 beta density with the

paramelers (Ezﬂ,a]. Let the arbitrary density of X, be denoted by f, (X,) =|X, |°E f(X,), where f(X;)

is arbitrary. Let the density of U be again denoted by g (U). Then

R
r fi'—') ) p-1
G S

2.1. A pathway generalization of Kober operator of the second kind in the matrix case

A pathway generalization can be considered. Let X; have a special case of a pathway density as follows :

B
A(x)=a|x P -a(1-q) X[ .24)

for I-a(l-q)X >0,q<1,p>0, a>0 where C; can be seen to be the following :

_ [a(1 _q)]ﬁ*ﬁ(‘zﬂ Fp(8+f—gr}+(p+l)) |

L (g, (&)

...(2.5)
1-g

Let X, have an arbitrary density f (X, ) and let X, and X, be statistically independently distributed. Let
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.. | .
U= X2xxl? x, =y o X, =V~"2yy~V2 and the Jacobian is |V|“'E§‘ . Let g (U) be the density of U.

Then, going through the earlier steps we have the following :

5 - B Pl B ;
s@W)=aluf 0y I E* 5 - a(1- q)ulie s (ryar Y
p(p+1)
[a(l q) " l"p,[8+——I [3'?_'_(1’;‘1)}
1 - &
Then r ( £ )g(U |U|
B +1
Tp (W + Ez_)
_ - | B p+l
a1V = a0= 00555 5 ) av
ﬂ L2
‘KU, . 2 f(U) .(2.7)
L,,P_“ .,
where K, a-g 2 f(U) can be called the generalized pathway Kober operator of the second kind in the real

matrix-variate case. When the pathway parameter g varies from —co to 1 it provides a pathway or a class of
operators and all these operators in this pathway class will eventually go to the exponential form. For

a=1q=0, %=0"£2ﬂ and 8 = p we have
a,i.'.f_ﬂ -
Kyot ? f(U)=KE*f(U) .(2.8)

the Kober operator of the second kind as a constant multiple of the density of the product of two matrix-variate
independently distributed random variables. Note that when ¢ — 1_ we can evaluate the limit of g (U) by using the

following lemmas :

; p8+_p(p+1}
lim ¢, = (B " 2 _ - '
Lemma 1. ol T‘p(6+f’7+l) ()
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Proof. Open up each T, (-) in C; of (2.5) in terms of ordinary gamma functions. Then use the following

asymptotic approximation for gamma functions. For |z| = e and § a bounded quantity

= I
I'(z+38) = J2n i PP .. (i)

This is the first term in the asymptotic series. This term is also known as Stirling's approximation. When

-—

g-—1_ we have 70—

g ™ and hence take |z| as I_I3_ and expand all gammas by using Stirling's approximation

-q
to see that C; reduces to (i) above.
, | B _apr(x)
Lemma 2. \ ql_1:1l1 [1-a(l-q)X|-a =e .. (i)

Proof. Writing the determinant in terms of eigenvalues we have

B B
|1 -a(1-q) X[~ =1E[ (1-a(1-g)n, )" (V)
Jj=1
where Aj,...,A, are the eigenvalues of X. Now " .
tim (1-a(1- )x-)% = ¢ P
q-)l_ q j (V)

Hence

pa_'_P(“'P)
im ¢(v) =2
q—1_ l"p(8+ 5 )

%e“ﬂ”( oy )av .(2.9)
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This is the limiting form of the pathway Kober operator of the second kind in this class of pathway operators
of the second kind.

In the pathway generalization, one can also replace the parameter a with a constant positive definite matrix
A. In this case the model will be written as

B
Ai(x) = G (A1 - (1- g) 42,4720 ...(2.10)

forg<1, 4>0, X; >0, I—-(1-q)4"2x,4"% > 0. The pathway parameter is still g. In this case

, plp+1)
C(A)_(l—q)pa' z |4 '2 Lo 8+—1ﬁ—q p+l))
1A= +1 1 L(2.11)
(5” Tl 2

Then g (V) of (2.6) goes to the following form, denoted by g, (U)

£4(U) = &, (4)| 475 [UP

£ B, p+! ;
g B s (B e .
XIV*,.O IV'”A "”'*(2-('-f:")b’|l 14 (I-q* 2 )f(V)dV ..(2.12)

where vr=v24WY1V2 _(1-gq)U
Then one can define a pathway generalized Kober operator of the second kind as

5-L+%ﬂ +1
F(U)=T,(8+57)g4 (V)

p(p+! +1
gt Tp(8+E +(p+1))

1-q
- B, pt
l_q+ 3

(1 _ q)p5+

o

& lVUZA"IVl/Z_(I_ q)U |l-q IVI-B ( B +|) £ 213)

In this case, as ¢ — 1_ we have
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Y ea 15"3*'&ﬂl
2 2
lim g4(U) = 4 =P ——luP
= rp(s""T)

—5—p—+-]— —Btr AII2V—I.~‘2UV—I!2AII2 f(V]a'V
x[, W7 ( ) .(2.14)

3. M-TRANSFORMS OF KOBER OPERATOR OF THE SECOND KIND
The generalized matrix transform of M-transform is defined and illustrated in Mathai (1997). The M-transform
of Kober operator of the second kind is the following : Z
Theorem 3. For the Kober operator of the second kind deﬁned in (2.1) the M-transform with parameter
is given by

5221 xlP Gl pn
{ ACOE } -[xo|X| 2 jr>x ll(l)lT X[*7 2 |1 f(T)dT |dX

T,(p+s) . -
=Tg+p—+s—)—f (s), R(p+s)>E,

R(a)> 2 ER)

where f° (s) is the M-transform of £ (X).

Proof. Interchanging the integral we have

o2t

{ f(X) } -[T>0 |T|_P_a f(T)|:l"pI(u‘.) IO<X«:T |le+s—£§ﬂ |T - Xl d dX]dT

p+1
Note that |7 - x| = |T||I = T—IJ'ZXT—I.’2|’ v =712x7-V2 = gy = 5 ax

1 +1 EL"_ + _pl
Hence [ |XP™7 |7 - X% ax =|7[*®*~5 [Pt -y ay
X<T
We can evaluate the Y-integral by using real matrix-variate type-1 beta integral

T,(p+s)Fp(a)
T,(o+p+s)

1 +1
Joerer IWPPRT (=15 ar =
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for R(a) > 1’2;', R(p+s)> p—z"]— Now the T-integral gives

[ TP f(r)ar =1 (s)

where f Z (s) is the M-transform of f(X). Hence (3.1) follows. Note that for p = 1 the result agrees with that in the

scalar case, which is available in the literature, see the example Mathai and Haubold (2008).

From (3.1) for p = 0 and R(a) > -P—z'l we have the special case of the Kober operator of the second kind.
0, I a-22
Ky f(X)= F(?)Inx T -X[""2 |1[* f(T)dT ..G2)

But the right side of (3.2) is Weyl fractional integral of order o in the matrix case, X W_* f (X),except for

the factor |T|™* . The Weyl integral in the matrix case is

XW2f(X)= |Tf"-f1’|"‘_£':"_I f(T)ar, R(a)> p;' .(3.3)

1
WIT»\’

Hence we have the following corollary.
Corollary 3.1. The M-transform of the right sided Weyl operator in the real matrix case is given by

M{XW;“|X]_°E f(X);s}=—)f' (s) .(3.4)

for R(s) > -32:1, R(a)> %7-'- where £ (s) is the M-transform of f (X).

The proof is parallel to that in Theorem 3. Let us see whether a Mellin convolutioﬁ type formula holds for
Kober operator of the second kind in the matrix case. Let

g(U)=], |V|_PT+Ifn(V_mUV"’z)fz(V)dV ..(3.5)

where £} (X)) is a type-1 matrix-variate beta density with parameters (p + pTH , (1). That is,

L]
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fi(X) = Lo (MTﬂ) I|"|1—X.|°"£;_I, O<X <1 6
for R(c) > Z51, R(p) > ~1 and f; (X,) = 0 elsewhere. Substituting (3.6) in (3.5) we have
I“:(l;(i: f:l,) v)= )I T |U|p Ve II " V—lfzuy-uzlﬂ‘p—;"] F7)av
-l e -urE sy
- r': (ll) Jysgp - f”_lmjz_+l [ f(v)av
= KP* 1 (U) i (3

which is the Kober operator of the second kind. Hence we have the following theorem :

Theorem 4. Kober operator of the second kind with real matrix argument can also be represented as
a Mellin convolution type formula

+1
K (x)=[, P2 A(r-"xv"2) sy (v)av

where fj (X 1) is a type-1 beta density with pdraméter (P + L}l,a) and f, (V) is an arbitrary function or

arbitrary density if the Kober operator is to be taken as a constant multiple of a statistical density.

4. Generalization in Terms of Hypergeometric Series for Kober Operator of the Second Kind in
the Real Matrix Case :

For introducing hypergeometric series of matrix argument we will need the definitions, notation and lemmas.
Hypergeometric functions of matrix argument are defined in terms of matrix-variate Laplace transforms. M-transforms
and zonal polynomials. Explicit series form for all cases is available through the definition in terms of zonal polynomials
and hence we will define in terms of zonal polynomials.
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5(Z2) = Fy(a,..0na,3 by, b Z)

@)y Cx(2)

2 2 (B)b), F )
where K= (k;,...,kp),kl +...+k, =k is apartition of k =0, 1, 2,....
- £ J'_l b —
(@g =11 (a=7Jk;s (8),, =5(b+1). )-r(b+k;=1), (B)y =1, b0 .(42)

j=1

and Cy (Z) is a zonal polynomial of order k and Z is a p * p matrix. The series is defined for the real and complex

matrices. Zonal polynomials are certain symmetric functions of the eigenvalues of Z. In our discussions, Z will be real
and positive definite. For more details about zonal polynomials see Mathai, Provost and Hayakawa (1995). The
following basic results are needed in our discussions. A standard notation in this area is

T,(,K)=T,(a)(e), ...(43)

The following basic results are needed in our discussion.

I

' I _ptl _ptl
Lemma3. [, [X"77 [1-XP72 ¢ (1x)ax =
L]

for R(a):»p—_', R(B):-P—_'-

Lemma 4. For R(a )>~“1:l A>0, Y>0

Iy (o K)T, (25)

e ]

Let us assume that all the parameters q,...,a,,b,,..., b are real and positive and let the argument matrices

Joaved ¥ P g (z1)ar = |4 Cx (24) (45)

pxp é_nd positive definite. For 4 > O, let the density of X, be

L]

_p#l
A(X) = F(a;, w3y, b AX)) | X P 1= X2
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1 « (alK (a ) ’D-TH
ggbg )y (b B (B), F CK(AX|)|X1|p|f XI| ...(4.6)

where the normalizing constant ¢ is available by integrating out term by term with the help of Lemma 3. It will be

available in terms of a,, Fy,, . Let f (X, ) bean arbitrary density. As before, let x; = "2y ~"/2 , then denoting

the density of U again by g(U) we have

=, A (V‘”ZUV*”Z)f(V)|V|'pTl v

I a+p+2) (= a),..(a,
S T B

fl"p(p+-‘-’;—')1“p(a) k=0 K

B
xIV|V'1’2UV‘1’2lP‘I—V‘”ZUV'”zr 2 lVl_PT"' Cx (A V"”UV"”)f(V)dV (4.7

This is the generalization of a constant times the Kober operator of the second kind in the matrix case. For
, F, = oF; one has the matrix-variate generalization of a constant times the Saigo operator of the second kind in the
real matrix-variate case.

5. Kober Fractional Integral Operators of the First Kind in the Matrix Case :
* Definition 5.1. We will give the following definition and notation for Kober fractional integral operator of the

first kind in the real matrix-variate case :

|X v |le (v)av 6D

for R(p) > -1, R(0)> 2"

Theorem 5. For R(o) > pT_I, R(p) > —1 the M-transform, with parameter s, of Kober operator of

the first kind in the real matrix-variate case, is given by

{00 g 1 l;lfl(_)l =V P g () av |ax
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l"p'(p+f’2—+'-s)

1
Fp(a+p+%-s

)f‘(s). R(s)<R(p+1), R(a)>~p—_1

where f" (s) is the M-transform of f (X).
Proof. Integrating out X first we have the X-integral

g ) _ptl RPN ) B _
Jeow VPP VP ax = [ e v e ay, pe sy

S—p—0i—

! Lo
= et | II +y~12yy-12 > v ay

p+l
Put z = p~V2pp-112 _, 47 - |V|” "2 dY . Then the X-intergral is

ety

1 1
1o 1275 |1+ 215 000-1) 7

+1
_ Iyls_p_pTﬂ r,(e)r, ("’—2— +p - s)

g (‘—"%1 +o+p- s)
for R(a) > —‘?21 , R(p - s) > -1 byevaluating the integral by using a type-2 matrix-variate beta integral in the real

case. Now, the V-integral becomes

+1 i
Ioo W5 r(r)av = 7 (s)

l -
Hence M{Ij’{}“f(x);s} = T (E;— i S)

7 (s) (5.3)

Ly 3;—'+a+p—s)

for R(a) > 2L, R(p-s)> —1.Note that for p =0,

IY*f(X) = |X[™ oD¥*f (X) (5.4)
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where OD}“ is the left sided Riemann-Liouville fractional integral for the matrix-variate case. Note that for the

scalar case, for p=1,

0 e T(l+p-s
M{I%%f (x)3s} = F(1+0L+p—)s) (5.5

for R(a) >0, R(p-s) > -1 agreeing with the corresponding Mellin transform in the scalar case.

Corollary 5.1. The M-transform of | X |_‘I oD¥* £ (X) is given by

M{|X|‘°‘ oDF* (X);S}= f (s) ..(5.6)

for R(a)>£2:~l~, R(s)<1

The proof is parallel to that in Theorem 5.

Let us treat a Kober operator of the first kind as a statistical density. Let X, have an arbitrary real matrix-

variate density f (X, ) and X, have a real matrix-variate type-1 beta density with parameters (p, &). That is,

r,(p+o I il Rl
fi(x)= p{ ))anlp 2 1-x["7, 0<x <1 (5.7)

for R(p) > 2, R(c) > 25" and £; (X;) = 0 elsewhere. Let X; and X, bestatistically independently distributed.
Consider the transformation X, = ¥, X, = V"/2U~'y"/2. The Jacobian is givenby |
dX, A dX, = |V|“PzLI P au aav

The marginal density of U, denoted by g, (U) where r designates that it is coming from a ratio, is given by

r,(p+a) ~ -2
3 P VUZU IV|!2 2
&r (U) rp (P) Fp (G) .[V |
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vk 1
x| -2V p () T o) ay

Ty(p+ta) o et
=—f " |y Nu=-v|*2 P f(v)av
rp(p)rp(a)l | -[V(U | | VI 7(v)

Ty (p) _ |U|—p—a

a-2X o ,
Therefore wgr (V)= I; ((1)( IV<U U-v[*" 4 f(v)dv

=1%oy ng) (5.8)

This is Kober operator of the first kind in l,ﬁ'xe real matrix-variate case and it can be considered as a constant
multiple of a real matrix-variate statistical density.;/

One can also consider a pathway extension for the real matrix-variate Kober operator of the first kind.

5.2. Pathway Extension of Kober operator of the First Kind in the Matrix Case

Consider the following pathway modified form of the density of X;. That s,

! B
fil%)= |55 [F-a(l-g)x)[=a, I-a(i-g)X;>0 ~ ..(59)

forg<1, a>0, B> 0 where

...(5.10)

Consider the same type of transformation as before : X, = ¥, X; = V'"/2y~'y'/2. The marginal density

of U, denoted by g, (U), is given by

W B
g”(U)=C2.[y |VI.-’2U—IVI!2| 2 |[_a(1_q)V1!2U—IV]l2|l_q

) X f(V)Ile_;Fl lu P+ ay (5.11)
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Then T, (B)gp (U)=

=G |ul® gl ")ju>a(l_q

pd B, ptl
[0(1"‘q)] l"p 8+lTE+p2 )|U|—5—(—E—+p+IJ

% JU‘:-.':t(l'—qr)lf'

U-a(i-q V|lq|V|5f(V)

U —a(1-q)¥[a P £ ()av

.(5.12)

The right side of (5.12) is the pathway extension of Kober operator of the first kind. The right side divided by

rp (8) is also a statistical density of a type of ratio of independently distributed matrix-variate random variables.

Note that for a=1, g = 0,—?— 22 0, (5.12) reduces to the special case (5.7) for & = p. Thus,
q 2 p

(5.12) describes a vast family of operators which can all be considered as generalizations of the Kober operator of the

first kind in the real matrix-variate case. The limiting form when g — 1 _

Note that

Hence

where

That is,

lim I; a(l-q) V”ZU"V”2|' g -O‘.Btr(ylfzu-lyln)
g-1_

. -5-2 8
lim g, (V)= [ql_;)np Cz)jmo U™ 2" |v|

g—1_

-

—uB“(VWU-IVW) (V) 5

Xe

_ (aB)”
o 27T, 6)
(aﬁ)pﬁ. |..5_£2il

is available from the structure in (5.11).

..(5.13)

..(5.14)
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112714112
e—aBtr(V u-ly )f(V

xf, 0 VP )V ..(5.15)

In this case also one can replace the parameter a in f; (X;) by a constant positive definite matrix 4 > O.

Then £, (X,) denoted by £, (X;) can be written as

521 1/2 IIZ"B_
S () = G (XL |1 (1-g) 423,42

C,(4) =

where

Then the density of ¢ = p1/2g;~1y1/2, denoted by g4 (U), is given by

£4(U) = G (o253

" "
) iy
xj‘w(l_q)y,fzﬂ,,z v |U—(1—q)V”2AV”2|‘ 1f(V)dV ...(5.16)
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ON THERMONUCLEAR REACTION RATE INTEGRALS
THROUGH PATHWAY MODEL
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ABSTRACT

In a recent paper an alternative simple and straight forward analytic proof has been given by Saxena,
Mathai and Haubold [25] for the astrophysical thermonuclear functions which are derived on the basic of
Boltzmann- Gibbs statistical mechanics. By employing the pathway model given by Mathai [19] ,we present
their extensfons and analytic proofs. The pathway model introduced by Mathai [19] includes, among others, the
Tsallis statistics, regular beta-2 distribution, F-distribution and Levy models etc. The generalized thermonuclear
reaction rate integrals are evaluated in a compact form in terms of G and H-functions by the application of the
Mellin-Barnes integral representation of the exponential function . Analytical continuation formula and series
expansion formula for these integrals are also derived, which enhances the utility of the derived results in
applied problems. The results are obtained in a form suitable for numerical computation. This study will open
new frontiers for workers in statistics, special functions, fractional calculus, physics and engineering sciences for

conducting interdisciplinary research

Key words: Thermonuclear reaction functions ,nuclear reaction rate,physics of atars H-function , pathway
parameter, pathway model,matrix-variate distributions, superstatistics, Tsallis statistics.G-function, H-funcvtion.
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1. INTRODUCTION

In view of their importance and usefulness in the physics of stars and the Sun ,several generalizations of
thermonuclear reaction functions were investigated during the last three decades. The general formalism that
describes these reactions exists since a long time and there is a wide consensus about understanding of our

relevant physics (Clayton, [3];Rolfs and Rodney, [24]). Mathematical and statistical techniques are used in
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deriving the closed form representations of thermonuclear reaction rates, see (Critchfield [4],, Haubold and John,
[7];Haubold and Kumar [8],Haubold and Mathai, [9,10,11],; Haubold, Mathai and Anderson , ;Anderson [14],
Haubold and Mathai, [9], Haubold and Mathai,[12.13] , Saxena, Mathai and Haubold [25]. Motivated by these
investigations, we present the generalization of the following integrals governing the nuclear reaction rates

,which are expressed in terms of the four astrophysical thermonuclear functions (Anderson et al, [1]) given below:

nevi= [y eol-y-2/y" 21, (L)
I(z,d,v):= fy" expl-y-z/y " 21, ...(1.2)
B(z6v) = Ey"’ expl-y-z/(y+0)! 21dy, .. (13)
14(z,8,b,v) = fy"' expl-y—by° —z/y" 214y, ... (1.4)

The pathway model given by Mathai [19] is described below

In order to create a pathway from one functional form to another a pathway parameter has been introduced
and a pathway model is created by Mathai [19]. By this model one can proceed from a generalized type-1 beta
model to a generalized gamma model ,when the variable is restricted to be positive. More families are available
when the variable is allowed to vary on the real line. We note that Mathai deals mainly with matrix-variate
distributions and the scalar case is a particular case there. For the real scalar case , the pathway model is described

below::

f(x) =cx' ' [1-a(-0)x°1""®, §>0, 1-a(l-a)x®>0; y>0, ...(1.5)

where c is the normalizing factor and a is the pathway parameter. For a <1,the model is a generalized type-1

model in the real case. Whereas,a =y =6 =1 gives rise to Tsallis statistics for a <1 (Tsallis,[26] and [27]).
Further we observe that (1.5) is a model with right tail cut off. When a >1 we may write 1-a=—(a-1),a >1,s0

that f(x) assumes the form,

f(x) = ex’[1+a(e-D)x° 1" a>l, ...(1.6)

which is a generalized beta type-2 model for real x. When a — 1, it reduces to

P
f@=a1e® x50 )

s e e

e — ety M
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This includes generalized gamma, gamma, exponential , chisquare , Weibull, Maxwell-Boltzmann,

Rayleigh, and related models (see, Honerkamp, [15], Mathai ,L19]).

It is also shown by Mathai and Haubold [21] that it also includes the Tsallis statistics (Tsallis,[26]) and
superstatistics introduced by Beck and Cohen [2].The normalizing constant ¢ for the three cases can be obtained
by setting u = a(l —a)x5 for a<liu=ala- l)xJ for a>la= ax’® for a—1 and then integrating with the help
of a type-1 beta integral, type-2 beta integral and gamma integral, respectively. The value of ¢ obtained is given

below:

.= Sla(l-o)]”® T(y/8+1/(1-)+1)

T(y/8) T/ (1-0)+1) for o<l .(18)
_ Sla(e—=D]"” T/ (a~1))
= Tq/®T@--y/8 7 * .19
dar”® _
= 1.
rqre 47 ..(110)

-

In a recent paper, Saxena et al [ 25 ] presented an alternative simple proof of the four astrophysical
thermonuclear functions by the application of the Mellin-Barnes integral for the exponential function ,which were
established earlier by Haubold and Mathai([10,11], by employing the statistical technique. The same method is
applicable in establishing the generalized form of the astrophysical thermonuclear functions studied in earlier
paper . It has been shown here that by the application of the pathway model introduced by Mathai [19] ,which is a
generalization of Tsallis statistics, ordinary beta-2 distribution, F-distribution etc. and the Mellin-Barnes integral
representation for the exponential function , the generalized forms of astrophysical thermonuclear functions are
readily developed in terms of H-function. Analytical continuation formula and a series expansion formula for the
integrals are also established. The results (2.1) and (2.2) given in the next section are recently given by Haubold
and Kumar [8] by follbwing the statistical technique. Our method is general and straightforward.

2. GENERALIZED DEFINITIONS OF ASTROPHYSICAL THERMONUCLEAR FUNCTIONS

It is proposed to establish the following generalized integral formulas for the derivation of the closed-
form representation for the astrophysical thermonuclear functions. By introducing the pathway model introduced
by Mathai [19] , the following results will be established

It will be shown here that
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hrp ® [ O s g

ra+——)

= l“"a Hzgo[a(]_a)bl;p(l"'

+7,1)
l-a 3
©.17p),(r1) J

pla-a)y P 12

(p#0); Re(b) >0,Re(¥)>0,0>0,and a <1

and
. l
e, & fx?""e"b"_p[1+a(a—1)x] a-1 gy

(1-——+.)
- ' Hi3|ata@-np!/Pl @-1 7T )

pa@ -1 r(-'—) .01
a-1 Yol

where

p #0;Re(a) > 0,Re(b) > 0,Re(y) >0, p > 0, > 1L,Re(y +5)>0.

Proof of ( 2,1 ).Let

n= Exy—le—ax—bx"ﬁ'dr’

1

d .
where d < =)

1

Replace e™® by [1-a(l-a)x]!=@ with the observation that as

1
a—1, [I-a(l-a)x]l-a@ - ™%,

Let us denote the integral in this case by It(,l},_,,, p - Then

@20

v (2.3)

]- -—
f‘(:?x.r,p " E:"‘a( a)xy—l[l_a(]_a)xll /(l—cr) exp(—bx p)dx . . (2-4)

where




| g
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Re(y)>0,p > 0;a <1,Re(a) > 0,Re(b) > 0; 1 —a(l—a)x > 0.

Using the fundamental Mellin-Barnes integral for the exponential function

——— RNy NN .

exp(-z) = Ll"(—s)zsds, | z]< ... (2.9

We find that

iy s By o s @

la(l-a) o _ e 1 -
13‘3) =E 1= a(-a)x)/0 G)ELF(—SX& Py’ dsdx .-+ (2.6)

Interchanging the order of integration and making the substitution a(1-a)x=u , it gives

W 1 1 P(l-a)P E r=ps-lg _(1-a)
I = I(-s)[a” (1-a)"b] |u (1-u) ds
a,a',}',p [a(]. a)]?f 2m IL " au
ra
_ (+ ) 1 I r(‘*‘)r(?' ps) [aP (1-a)Pb)’ ds. o cK2uT)
[a(1- a)]}' 25 Ll"(1+ +y o5)

On interpreting it with the help of the definition of the H-function given in (2.10), we finally obtain

1
o M) H“[w"a—a%{“* Lirp)

ay.p = ,a<l. ...(2.8)
laare oy .. 0)

which on applying the following property of the H-function (Mathai and Saxena,1978)

A op4p ]5>o .. (29)

Hm n
P9 |: (stBq)

(ap, 1 1pym
(bq,aaq) =5 p,q

yields the desired result. The H-function occurring in the above results is defined by means of a Mellin- Barnes

type integral in the following manner (Mathai and Saxena,and Haubold , [23]):

) m,n (ap’Ap)
Hm (z)= H P.q (bq,Bq)
m.n (ay,4) ). (ﬂ A) I __g
, = H, lus. B (b.,a.,)] m_.-[.@(‘f)z dé, ... (2.10)
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where i = (-1)"2,

“’[;’;l T(b;+B jr:)][n:’=l T(-a;-A jg)1

o) = — eIl

q p
jemsiT0-bj B jg)lnfzmlr(a j+ 4 jg)]

and an empty product is always interpreted as unity ; m, n, p, ¢ € N, with
0<n<p, 1<m <q, 4;,B; € R..a ,bj € R or C (=1,...,p;j=1,...,9) such hat
A, +k)# B(a,—L-1),(k,Le Ny i=l,..n;j=1,..m), s (2 2y
where we employ the usual notations: N, = (0,1,2...); R = (-0,00) ,

R, =(0,%0). and C being the complex number field. The contour Q is either L_,,L, or L . For the

explicit definitions of these contours, see Kilbas and Saigo,[16]). A detailed and comprehensive account of the
H-function is available from the monograph written by Mathai , Saxena and Haubold [23](,and Kilbas and Saigo
[16].

It may be noted that as « —» 1,then by virtue of the limit formula for the gamma function ,we obtain the

following result given by Haubold and Mathai [13]:

m 1 20 .1/p s
!a,l.y,p m}r H0,2 [ab ‘(0-1! p).(y‘l)jl s e (2. ] 3‘)
Proof of (2,2).Let
Ih= ﬁx"‘e_m"m_pﬁ,
where Re(a)>0, Re(b)> 0 and Re(p)>0. win CR 1LY

Replacing exp(-ax) by

LY

1
[1+a(a-1)x] @- ...(2.15)
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and noting that as & — 1, (2.15) becomes exp(-ax) , the integral /7 transforms into the following form ,denoted

2
by fg,c)r.y,p ;

It(??c)r,y,p = fxy'le"bx_p[lw(a—l)x] a1y, ...(2.16)

Applying the integral formula (2.5) and interchanging the order of integratioﬁ , we find that
1

15070 = ﬁ LF(—s)bs fﬂ' =A5=11 4 g(ar~T)x] @1 divds . 217)

To evaluate the x-integral , we set a(a —1)x =1, then we obtain
1

(d) _ 1 s E" r-ms=ly . 0 a-1
I = | I'(-s5)b t [1+1] @=ldds ...(2.18
ﬂ.Q,J’oP,z [a(a_ - 1)]}/2m L ( )

The t-integral is a beta type-2 integral, consequently, we finally obtain

@ |
’a’ L ] -
GEEP Aata D) .«(_L_

a-1

) Lr(—srp)r[ﬁ- y+ s)l'()' —sfab" P @~ ds,. ...(2.19)

where Re(y + ps) >0 ,Re{ﬁ—ywm) > 0,Re(s) > 0. which , by virtue of the result ( 2.10 ), can be expressed in

terms of the H-function in the form

1
(A=——+7D| (a>1) ... (2.20)
(7,1),(0,1/ p)

(2) _ 1 1 2,1 1/p
! = H 5| {ala —-1)}b
a,a'.}',P p[a(a N 1)]?’ —I_J 1,2|i

[ 1

This completes the proof of the results (2.1) and (2.2).It is interesting to observe that as « —1,(2.20)

reduces to a result given by Haubold and Mathai (1998 b)

D —-1-?7H2’0|:ab” p 0 21

aly.p Q2 ‘(y,l),(o,np)}

where Re(a) > 0,Re(b) > 0,Re(y )>0 and Re(p) >0.
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3. SPECIAL CASES

If we set — =m, where m is a positive integer, then by the application of the multiplication formula for
P '

the gamma functions, the result (2.1 ) and (2.2) simplify in terms of the G-function (Mathai and Saxena,
[22];Mathai [19] in the form

1
1+?'+r_;],(a <1 eI}

—a’ m+1,0| a(l—a)b™

1,m+1
m mm

;0

Jm@z)=m/2rq 4 %)
T [a(-a)}
m

A0, m), y

where Re(a) >0, Re(b)'> 0,Re(y) > 0,a <1 and A(a, m) represents the sequence of m parameters

+1 +m-1
B8N D il
m m m

and

/@ __Imen(=m/2 Gm+1,1{a(l—a)bm

1 - 1,m+1
a,af,;,b,y [a(1-a)) r(LJ m™m

1
“7@'1,(“1) ...(32)

A(o,m), y
a-1

where Re(a)>o,Re(b)>0, Re(y) > 0, > 1,respectively.

. . . | .
For the non-resonant thermonuclear reactions with high energy cut off a=1,p= 507 =1+v,(3.1) gives

1 1
== gl
M ~ I“(]+1Ha) 30 (!—a)bz V+I__a+
I 1 - v+l Gl3 4 1 : -+ (33)
l,a,i,b,l+v J;(l—a’) ? O,E,VH

where Re(b) >0,Re(v)>0,a <1.

In a similar manner , in case of the probability integral for a non-resonant thermonuclear reaction in the
Maxwell- Boltzmannian form, from (3.2) for

one obtains
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1
. 2 v- +2
[(2) = 1 G?’] (@-1)b -1 ...(34)

1 3 ?
La,—bl+v  Jr(-a)’t'n L . 0L v+
2 a—1 2

where Re(b) > 0,Re(v)>0,a >1.
4. GENERALIZED FORM OF THE ASTROPHYSICAL THERMONUCLEAR

FUNCTIONS /,(z,t,V, 1, 0)

It will be shown here that

13z t,v, )39 fy"“ [1+(@-1)y] @ exp[-z(y+1)~H]dy

1 r

p =l
1

L, 1 LD, (1=r,1).(0, &)
Ha-1) 22| *
( JZ " H3% L(a—l)r(r,p),( 1 _rl) .40
-1 =0 a-1

1 r
o [

-——]

_ 1 tla—1) 22| z(a-1)

=7 2 Famad & o
a-1 = I

where Re(v) >0,Re(z) >0,a >land p>0.

, .
(I—F‘,‘U),(l-a_]‘l'!‘,l) (42)
(0,1),(r,1), (1, &)

To prove (4.1), we see that in view of the formula (2.5) , the v}llue of the integral is equal to

1 .
1 -s [ s-1 1yl a-1 sp
— _[Lr(s)z Fy [+ (@—y] @=1(y+0)% dyds ..(43)

Upon using the formula

a0
(1-x)"% = Z*(%xr,lxk 1, ... (4.9)
r=0

L]

the above expression (4.3) becomes

I I L & ol )
-5 §— _ —1,51 = —SH)r
< _[Lr(s)z | ¥4 @-1y) @l §=0:——-————dyr! ds, |y/ti<l, .. (4.5)
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~ which on changing the order of integration and summation yields

1

57 T "‘"Z( . e (s @-y) @ s, |yRI<1 . (46)
r=0

On evaluating the y-integral by type-2 beta function formula, namely

m-1
fmm = B(m,n),Re(m) >0, Re(n) >0, N,

where Re(m)>0,Re(n)>0,the result (4.6) gives

1 s
Z( y:"r[a I])rI l"(s)l"(r+s)1“(r—sp)1"(a_1—r—s)( M p “
r[ J L T(-su) Lz(a'—i) oo
a-1

which on interpreting with the help of (2.10) gives the desired result (4.1). By using the transformation formula
for the H-function ( Mathai and Saxena,1978), the result (4.2) readily follows.

S. GENERALIZED FORM OF THE ASTROPHYSICAL THERMONUCLEAR
FUNCTIONS /,(z,0,b;v,cx)

Next, we prove the formula

1

Lot [7 @01 @l epl-ty0 +271 20 oG5
1 @ . r (ORI (T
=[@-1"T [——) IZ—[-W] B e=l 2 ¥, .65
U 2 #e-n°t W+ @+, )

where Re(v) > 0,Re(b) > 0,Re(z) >0and & >0.

Proof. By virtue of the result ( 2.5 ),the integral formula ( 5.1 ) can be written as

L]

1
Ag(ztv, pa) = -[)Dys_][l+(af-])y] a‘l-Z%LF(s)ysm(by‘SHQ+z)-sdsdy
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On employing the formula (4.4) and reversing the order of integration and summation, the above

expression becomes

1

r v+(5+ )r+——l
Iq(z,t,v, ) = Z(—M 2; _.L sl"(r+s).[:)y 2 [1+(a-1)y] a-! dyds ...(5.3)

r=0

| @ [_b,{z(a _1)5+1f2}]"

v I
@1 ;5 r!

1 1
VH(S+=)r+——1 -_—
xE-l;L{z(a—l)Uz}_sl"(r+s)fu 25 ] @—Lduds,

which on applying type-2 beta function formula ,the above expression yields

I4(z,t,v, p,0) = [(a—l)v ( )]_ Z{ r

1
a-1

! 1/2,-s 1, s 1. &
XEIL{z(a‘—I) } I”(r+s)l"[v+(5+5)r+5:|\'[ —v—(§+5)r—5}ds,...(5.4)

which on being interpreted with the help of the definition of the H-function (2.10) establishes the result (5.1 ).It
may be noted that the result ( 5.4) can be expressed in terms of the G-function , see (Mathai and Saxena,[22]) in

the form

14(é,f,v,ﬂ,a)

4 +(6+= )r

-1 o® l+v—
[(a—]) r( )] Z [ 2b/{z(a — 1)‘5“”2}] 0133’ y . rff -1 T2 L)
r= 0 E,T,V+(§+—)r

6. SERIES EXPANSION AND ANALYTICAL CONTINUATION FORMULA FOR THE
FUNCTION [V _

aoy.p”
|
We have !‘(,],,)g‘},,p ! : le’l a(a—l)b”p(l_ﬁ”"y") ...(6.1)
pla(@ -1 r[ J ’ (7.1, 0,1/ p)
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= ! l. _[ I (7/—‘9)1‘(—31’16')1"(——I —y+9)a@-1p!’ P1S ds. ...(6.2)
¥ 1 /H a-—1
plata -] r( )

Assuming that the poles of the integrand of (6.2) are simple, then for calculating the sum of the residues

at the poles of the integrand of ( 6.2) at the points given by s =y +v(ve Ng) and s=pv(ve Ny), it is found that

. v
Loy = 1 Z( L et ’)r( ]_l+v)[a(l—a')b”p]

Mz

+ {{a(af—])}yl‘( H Z " al_l—y+pv)[a(a—l)b”p:|pv, ...(6.3)

which holds for a>l,|a(a—l)b” Pl<1. On the other hand, if we calculate the residues at the poles

s=y—v- ! : (v € Ng) of the integrand of (6.2) ,we obtain the following analytical continuation formula
a _—

| 1
Ik y,p= ! : le a(a - l)b”ﬁ'('*—lﬂ’,l)]
p[a(a—l)]?'r( I) D, (0,1/ p)
%(r-ﬁ) , By
S 1 Z(—S r(al_,*V)”p(al_l)—%+%)[a(1—a)b”ﬁ] ... (64)
pla(e -]~ lr[__l_lj v=0
ﬁ(" 'ﬁ) (i€ _r1
- 2% p(a 0 P =l | ..(6.5)
: a(a-1p!’ P

pla(a-1ja-1 r( ! J -—-

where a>bl,|a(a~1)b” P>1.and 9¥y() is the Fox-Wright generalized hypergeometric function, defined by
( Erdélyi et al, [6],p.183; Wright ([27], [28]),Mathai , Saxena and Haubold, [23] Also see [17]. [18])],
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4
; ] [raj -4
aP’Ap) _L j=1 e
F"Pq[(bq,sq)lz ‘mj}, q () S, ... (6.6)
{Jre; -85}
j=1

where the path of integration L separates all the poles at s=-£(¢€ Ng)to the left and all the poles at
s=(ay +np) Ay (r =\, psnp € N ) to the right. If L=({-iw,§+io)¢ € R), then the representation holds if

either of the following conditions are satisfied (Kilbas et al, 2006):

q P
1-rx
0<1; lrg(2< L= 220 0= By~ ) 4)):
j:l j:]

or, 8=I,(9+l)§+%< Re(g),arg)—z) =0,z #0.

7. EXPANSION OF THE GENERALIZED ASTROPHYSICAL THERMONUCLEAR
' FUNCTION /®

a.ny.p

We have

1
1+~—]

(]+—"‘I +7,1)
1- (e <) . (7.1)
a,a.y,p,2 fa( N% 1,2 (24

70,01/ p)

1
Ni+——-
— (+1—CEJLI I‘(y—s)I‘(—sfp) [a(]_a)b”p]sds’ (?2)
plata=DF 27 L1y +——-s)
-«

where it is assumed that the poles of the integrand of (7.2) are simple. On evaluating the residues at the poles of

the gamma function I'(y—s) at the points s=y+v (veNp) and the gamma function I'(-s/p) at the points

s =vp(v e Ng) , we find that

1 /
14— [pF/P
) r( '-a] zm:(‘")v =Ly ra+
0 vl P

- V)}[a(l —a)pl!'P ]V ...(13)

fa,a.y,,o = P a-1
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r[“'_]*)z(

at-a)y - 'y - ;6"/)/1"(1+
al (24

! i -pv}}[a(l —ayp!/ P ]p.,, (14

where a <1 and |a(l-a)!/ P |<1.

As a concluding remarks, it is observed that the results in this paper are in much better compact forms than the

ones obtained in an earlier paper ( Saxena et al ,[25]) and are suitable for numerical computation. The reason lies

in the fact that the introduction of the parameter « in the pathway model by Mathai [19]) has simplified the

results . A further study of the expansions of the integrals given in the paper in logarithmic cases may give some

useful results and may form the subject -matter of a future communication.
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SOME GLIMPSES OF FLUID DYNAMICS *

J. L. BANSAL
F.N.A.Sc.
Ex. Prof. of Mathematics, University of Rajasthan, JAIPUR (INDIA)

The earlier investigations in the field of fluid dynamics, the science of motion of liquids and gases
together known as fluids, were based on the concept of perfect (ideal) fuid or inviscid fluid. The :natﬁematical
theory of perfect fluids based on Euler's equation is extremely developed and gives satisfactory explanations for
some flow phenomena such as motion of surface waves, the lift and induced drag of an aerofoil or the formation

of liquid jets and the like.

However, the theory of perfect fluids fails to explain other phenomena such as skin- friction, form drag of
a body, no slippage on the surface of a solid body, flow separation, vortex formation and the like. In i;rder to
understand these phenomenon, we have to investigate the flow of real fluids which are, in general, viscous and
compressible. The various types of flow are distinguished according to the fluid properties which characterize the
physical situation. The motion of real fluids which may be steady laminar, unsteady laminar, and turbulent can be

classified, generally, into two categories known as Newtonian and Non-Newtonian fluid motion.

(I) Newtonian Fluids :

In Newtonian fluids there is a linear relation between the magnitude of applied shear stress and the
resulting rate of deformation. If the relation between stress components and the rate of strain components is
invariant to orientation of the coordinate axes then the fluid is said to be isotropic. Newtonian fluids have been

found to describe adequately the mechanical behavior of many real fluids under a wide range of situations.

From the theoretical point of view, the fundamental equations for the dynamics of real fluids, which are
Newtonian and isotropic, are the Navier-Stokes (N-S) equations with no dissipation of energy in a spherically
symmetrical expansion or compression, so that there is only one coefficient of viscosity. Due to the non-linear

character of these equations only in few special cases exact so lutions for steady laminar flow through pipes and

* Dedicated to late Prof. P. D. Verma, University of Rajasthan, JAIPUR
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channels known as Hagen Poiseuille flow and Couetie flow have been obtained including the problems of fully
developed flow region, franspiration cooling and the flow in the entrance region of ducts. Flow in convergent
and divergent channels (Jeffery-Hamel flow), stagnation point flows (Himenz and Homann flow) and flow due
to a rotating disc (Kdrmdn flow) have also been studied. The well known unsteady flow problems, known as

Stokes’ first and second problems have become the basis of numerous generalizations.
Theory of very siow motion :

In order to study the flow past bodies of finite size approximate solutions of the N-S equations have been

obtained for the extreme cases, viz.,

(i) when the Reynolds number is very small and
(ii) when Reynolds number is large but less than the critical value at which the flow ceases to be laminar

and turns turbulent.

If the Reynolds number is very small the viscous forces will be considerably greater than the inertia
forces and as a first approximation the inertia terms may be neglected altogether from the N-S equations to yield
Stokes® equations for the theory of slow motion. Solution of these’ simplified equations for flow past a sphere and

a circular cylinder has been studied which give rise to the concept of Stokeslet and Stokes paradox respectively.

An improvement of the Stokes’ solution was later given by Oseen, who took the inertia terms partly into
account and improved the picture of the flow field. The other important industrial application of the theory of

slow motion is the hydrodynamic theory of lubrication.

Theory of boundary layers :

It was Prandtl (1904) who introduced the concept of boundary layer so that the N-S equations were
simplified to a mathematically tractable form. Thus succeeded in giving a physically penetrating explanation of
the importance of viscosity in the case of thin fluids like water and air, which in earlier investigations were

regarded as non-viscous (ideal), in the assessment of frictional drag, flow separation and vortex formation,

Boundary layer flow past a flat plate (Blastus flow) and near a cuspidal and blunt edge have been
extensively studied with the help of Prandtl boundary layer equations using both analytical and numerical
methods. Approximate methods, such as Kdrmdn-Pohlhausen method based on Kdrmdn momentum integral
equation and other energy integral equations have been used to give quicker, although less accurate but

practically acceptable, results.
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Jet Flow :

The boundary layer assumptions are not only applicable to regions near a solid wall, but can also be
applied when two layers of fluid with different velocities meet. One such example is the jet mixing when a fluid is
discharged through a slit or small orifice and mixes with the surrounding fluid which is at rest. Three types of jet
flow with the without swirl viz., (i) Plane free jet, (ii) Circular free jet and (iii) plane wall jet have been studied

extensively. The other example is the region of wakes behind solid bodies.
Theory of Compressible flow :

In classical hydrodynamics the flow of an ideal incompressible fluid has been extensively investigated.
However, the density of some fluids, particularly gases, changes considerably with the speed as well as with the
temperature of the flow. For high speed flow determined by the Mach number, or larger temperature gradient flow
or both, the effect of compressibility must be considered in the study of the fluid flow, known as gasdynamics. It

is a combination of two sciences, fluid dynamics and thermodynamics.

In addition to Mach number, the controlling factors in this case are the Reynolds number, Prandtl number
and the ratio of specific heats. The inviscid theory of gas dynamics is important in the calculation of nozzle
characteristics, shock waves, lift and wave drag of a body, while the viscous theory is applicable to the calculation

of skin-friction and heat transfer characteristics of a body moving through a gas at high speeds.

In a rarefied gas flow the gas adjacent to a solid surface no longer takes the velocity and temperature of
the surface as we have in noslip conditions. In such a flow the gas at the surface has a finite tangential velocity,
i.e. it slips along the surface and a temperature jump between the surface and the adjacent gas takes place, which

depends on the molecular mean free path and the Prandtl number of the gas.

Flow of multicomponent mixtures :

The flow of a single, homogeneous fluid, is enlarged upon by the consideration of the flow of binary
mixture, chemically reacting or non-reacting, or multicomponent mixtures. In addition to the momentum and the
heat transport, mass transport must also be included in such fluids flow. The property controlling the mass transfer

is the diffusion parameter called the Sclumidt number.
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Flow through the porous media :

The study of the flow through porous media has one of the most useful applications in industries, viz., in
the field of chemical engineering for filteration and purification process, in petroleum technology to study the
movement of natural gases, oil and water through the oil reservoirs, and seepage of water in river beads to study

the underground water resources.

Two important properties of porous medium are porosity and permeability. The porosity in the ratio of
the volume of the void space to the bulk volume of a porous medium and the permeability is the measure of the
ease with which a fluid flows through the medium. The Darcy’s law govern the flow of homogeneous fluid
through the porous medium, provided the permeable material is isotropic and homogeneous. A large number of

studies both analytical and experimental have been made in this field.
Turbulent flow :

Turbulent flow is random in nature. It is an irregular condition of flow in which various quantities show a
random variation with time and space coordinates. If the same experiment is performed several times under
apparently identical conditions, the measured property of the fluid, say pressure, will not be the same in different

experiments, but will fluctuate randomly.

According to Taylor and Von Kdrmdn turbulence can be generated by fluid flow past solid surfaces or

by the flow of layers of fluid at diff=rent velocities, known as Wall turbulence and free turbulence respectively.

In the mathematical description of the turbulent flow it is convenient to assume that the motion consists of
a mean flow and a superimposed fluctuation or eddying flow about the mean value. The mean flow equations
known as Reynolds equations, when compared with the N-S equations of laminer flow, contain additional

stresses called Reynolds stresses or Virtual stresses of the turbulent flow.

The importance of stability in connection with tubulence arises because a motion which is definitely
unstable for small disturbances connot remain steady for speeds higher than that at which instability sets in. On
the other hand, a motion which is definitely stable for small disturbances may become turbulent when finite
disturbance§ are imposed on it. One of the controlling parameter in the stability problems, studied extensively by

Chandrasekhar and others, is the Rayleigh number.
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Different theories have been provided to study the impact of eddying flow on the mean flow, such as (i)

statistical theories, (ii) mixing length theories, (iii) momentum transfer theory, and (iv) vorticity transfer theory.

The field of turbulant flow requires many further investigations.

Magnetofluid dynamics :

The subject of Magneto Fluid Dynamics (MFD) is an extension of fluid dynamics when an electrically -
conducting fluid moves in the presence of a magnetic field. Several alternative names which are widely used are;

magnetohydrodynamics (MHD), magnetogasdynamics (MGD), and hydromagnetics.

A gas at ordinary and moderately high temperatures is a nonconductor, but at very high temperature
thermal excitation takes place leading to dissociation and ionization. Ionized gas is often called a Plasma which is
an electrically conducting gas by virtue of its charged particles due to free electrons. Highly ionized gases are

present in the Sun and other stars. Such problems are handled in plasmadynamics.

Examples of engineering problems involving the flow of electrically conducting fluids are the MHD
power generator, MFD submarines, plasma jet, confinement of plasma in nuclear fusion (pinch effect) and reentry

problems of missiles and satellites.
(II) Non-Newtonian fluids :

Many real fluids exhibit behaviors which are not accounted for by the theory of Newtonian fluids. Fluids
which do not follow the linear law are called Non-Newtonian. Examples of such substances are polymeric

solution, paints, tooth paste, thick long chained hydrocarbons, molasses etc.

A dilatant, or shear thickening, fluid increases resistance with increasing applied stress. Alternately, a
pseudoplastic. or shear thinning, fluid decrease resistance with increasing stress. If the thinning effect in very
strong, the fluid is termed plastic. The limiting case of a plastic substance is one which requires a finite yield
stress before it begins to flow. An idealization of such a flow is known as Biﬁgkam-plastic. An example of an

yielding fluid is foothpaste. which will not flow out of the tube until a finite stress is applied by squeezing.

Some fluids requires a gradually increasing shear stress to maintain a constant strain rate and are called

- . .
rheopectic. The opposite case of a fluid which thins out with time and requires decreasing stress is termed
rfu'.\:o'tmpic such as printer’s ink. The study of Non-Newtonian fluids is treated in the books on rheology and a

large number of problems, parallel to the dynamics of Newtonian fluids, have been studied in the literature.
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SOME GLIMPSES OF FRACTIONAL CALCULUS

K.C. GUPTA"

INTRODUCTION

When f(z) = z', we know that its derivative is 47, second order derivative is 122’ and so on. Infact, the
concept of n™ derivative of a function is familiar if n is a positive integer. But now we can find its derivatives of
orders 1/3, V0, 2+i. The branch of mathematics that studies and deals with the analysis of derivatives and integrals
of functions to an arbitrary order (fractional, irrational, complex) is known as Fractional Calculus (F.C.) Now
Fractional Calculus stands on a firm footing by valuable contributions of a large number of eminent research
workers such as Leibniz, L'Hospital, Euler, Lagrange, Laplace, Lacroix, Fourier, Abel, Liouville, Peacock Gregory,
DeMorgan, Riemann, Center, Griinwald, Letnikov, Heaviside, Pincherle, Hardy, Weyl, Post, Berg, Zygmund, Davis,
Erdélyi, Ko'ber, Widder, Riesz, Srivastava, Buschman, Higgins, Samko, Osler, Love, Sneddon, Kesarwani,

" Prabhakar and several others. I have gone through some of these works and find them interesting and useful.

The familiar calculus of integral order is very comfortable with trigonomeiric functions, exponential
function and the polynomials. Certain higher transcendental functions such as Gamma function, incomplete
gamma function, Mittag-Leffler function, Bessel function, hyper geometric functions Legendre and Laguerre

functions are admirably suited to the study and development of Fractional Calculus.
THE GAMMA FUNCTION

The gamma function has great importance in analysis and applications. It is a building block of several

higher transcendental functions. The simplest definition of gamma function I'(2) is in terms of Euler's second

integral is given by

L(z) = [ e d, Re(z) > 0
0

L]

Also it is known that

* Retired Professor of Mathematics, Malaviya Regional Engineering College (Now MNIT), JAIPUR - 302017 (INDIA)
Res. : C-122/3, N.K. Pareek Marg, Bapu Nagar, JAIPUR - 302015 (INDIA)
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') =1, Tk = Y and gamma of 0 and negative integers is infinite.

On integration by parts, the defining integral of I'(z), we easily arrive at the most important property
[(z+1) = z T(z) of gamma function. Though the defining integral of gamma function cannot be obtained in
terms of elementary functions, but because of its importance it has been tabulated and has been studied by

eminent mathematicians Euler, Gauss and Weierstrass.

It can be easily established that #” order derivative of a constant (say) c is given by

cz™*

k e
D(C)_r(l-k)

where & is an arbitrary number and we are dealing with Riemann Liouville version of F.C,

If k is any positive number (say 4) in the above formula we get

cz™

r(-3)

D*(c) =

which is zero because I'(-3) is infinity.

From the main formula it is clear that only integral order derivations of a constant are all equal to zero but

all other order derivatives of a constant will be functions of the variable.

Thus if k=% in the main formula, we get semi-derivative of constant ¢ as

lez(c)=cz-”2 c

() Rz

2

The above formula is more interesting for its historical prospective than for its mathematical content.

Abel used this formula for solving TAUTO CHRONE problem: the problem of determining the shape of
the curve such that the time of descent of a frictionless point mass sliding down the curve under the action of
gravity is independent of its initial placement on the curve. More generally, the time required for descent is

specified as a function of initial height. For the full discussion and the solution of this problem we refer to the text
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book on the subject by Miller and Ross pp.255-260. Abel was probably the first mathematician to give an
application of F.C. This problem should not be confused with BRACHIS TO CHRONE problem in the calculus

of variations which is concerned with finding the curve of quickest descent.
Now we shall talk about NH Abel a little more.

Abel was born in 1802 and passed away in 1829 at in an early age of less than 28 years. Abel is
considered as one of the greatest mathematicians of all time. The entire development of Algebraic geometry in the
19th century largely depends on the findings of Abel. He has done outstanding work in other areas of mathematics
as well. Abel was Norwegian and in honor of Abel Government of Norway has constituted Abel prize (an

international prize in Mathematics to be awarded annually) from the year 2003 onwards.

Abel prize is awarded to enhance the public visibility of mathematics, to encourage young people to study
mathematics and to point out the growing role and importance of mathematics in modern society. The amount of
Abel prize is equal to Nobel Prize recognizing mathematics as being at par with physics, chemistry, economics,

etc. Abel prize can be seen as Nobel of Mathematics.

Fractional Calculus is not a hollow extension of conventional theory nor a sterile exercise in pure
Mathematics. Besides, serving as a tool in unifying and extending several theorems, formulae, concepts and
techniques occurring in calculus of integral order in a versatile and elegant manner, F.C. is capable of solving a
large variety of boundary value problems occurring in sciences and engineering: heat conduction in solids, fluid
flow, diffusion theory, electrical transmission lines, electrical networks, electromagnetic theory, rheology,

viscoelasticity, probability theory and several others.

The first book on F.C. by K.B. Oldham and J. Spanier appeared in 1974 [15]. The book is published by
Academic Press and was sent to me for my review by Mathematical Reviews (USA). The book contains a brief
historical survey and development of F.C. during 1695-1974, the theoretical foundations of the subject, semi
derivatives and integrals of several useful functions and applications of F.C. in solving diverse important
problems. During the last 37 years, considerable mathematical activity has emerged out in this useful field by way

of international conferences [14], symposiums, workshops, books [12; 13] and a large number of research papers.

The access of F.C. to scientists and engineers is now available through the interesting research work done
by a number of persons. Thus, N. Engheta [1; 2; 3] has given the use of fractional calculus in the electromagnetic

theory. Lorenzo and Hartley [8; 10] have introduced the concept of initialized fractional calculus that requires the
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initial condition that is time varying due to the past distributed storage of information and have solved fractional
differential equations occurring in various fields. Mainardi et al. [11] have studied the reduced Green function in
connection with the solution of the space time fractional order differential equation. Again, M. Garg [4] has
studied fractional generalizations of Volterra type integro differential equation and the temperature field problem
in oil strata. Podlubny in his book [16] has given an account of the applications of fractional order differential

equations in several fields.

In Rajasthan, a number of researchers notably R.K. Saxena, S.L. Kalla, K.C. Gupta [5], C.L. Koul, P.K.
Banerjee, R.K. Raina, S.P. goyal, M. Garg, Rashami Jain, Kantesh Gupta, V.B.L. Chaurasia, V.G. Gupta, R.K.
Khumbhat, Mridula Purohit, Vandana Agarwal and several others have contributed a lot to the further

advancement of F.C. through their valuable research papers.
SPECIAL FUNCTIONS

Lorenzo (Glenn Research Centre NASA Cleveland OHIO, USA) and Hartley (Department of Electrical
Engineering, University of Akron, Akron OHIO) have introduced two special functions of fundamental importance
[9] which provide solutions and understanding of several fractional order differential equations and the related initial
and boundary value problems. Both of these functions and several other useful functions notably Mittag-Leffler
function follow as simple special cases of the H-function which is a Mellin-Barnes type contour integral having
products and quotients of gamma functions in the integrand [17]. Four books have come out relating this functions.
First by Mathai and Saxena (1978), Second by Srivastava, Gupta and Goyal (1982), Third by Kilbas and Saigo [7]
and the Fourth by Mathai, Saxena and Haubold (2010). The H-function has embedded in it a large number of simple
functions obtainable from it on giving particular values to its paramctérs [6]. These functions form solutions of
fractional order differential or integral equations of practical importance. Lorenzo has pointed out to me in private
communication by e-mail that the H-function is interesting. It is now suitable time for young researchers to discover,
study, and develop these special cases of the H-function which are solutions of fractional order differential or

integral equations relevant to physical problems in engineering.
SEMI DERIVATIVES AND SEMI INTEGRALS

Thé diffusion equation governs a wide varjety of physical problems: Electrical transmission lines, heat
conduction in solids, electro chemical problems to mention only a few. The conventional solutions of the
diffusion equation range from closed form solution for very simple model problems to computer methods for
approximating the concentration of the dif’fus‘ing substance on a network of points. The F.C. method develops a

technique that leads to the replacement of the diffusion equation together with an initial and asymptotic boundary
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condition, to a semi differential equation that involves proportionality of first order spatial derivative to a half
order temporal derivative. The proper understanding and the use of Laplace transform theory in finding semi
differentiation and its inverse (semi integration) plays a fundamental role in obtaining the final solution of the
problem. The semi derivatives and semi integrals of several useful functions are available in Chapter 7 of the

book by Oldham and Spanier [15].

CONCLUDING REMARKS

Finally, it is suggested that F.C. should be included in the curricula of Mathematics in Universities and
Technical Institutes. further, it will be in the fitness of things if a workshop is arrangedl in this field for interested
teachers to make them familiar with this useful branch of Mathematics. It is expected that these teachers will
teach F.C. in their institutions, make the students aware to this field. These young minds will be excited and
ignited. They will apply the F.C. in solving certain boundary value problems occurring in diverse field of sciences

and engineering.
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ABSTRACT

In this paper, we introduce a new class of the polynomial set which includes ultraspherical and Hermite

polynomials as special cases and derive some implicit summation formulae by applying the generating functions.

These results extend some known summations of generalized Hermite polynomials.
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1. INTRODUCATION
The 2-variable Kampe de Feriet generalization of the Hermite polynomials [ 4 ] reads

[E] r..n=27
Hn(x,y) =“’Zk’=or"—!(,§;5;)-! e (11)

These polynomials are usually defined by the generating function

n=o

et = 3% H (x,7) 5 e (1.2)

and reduce to the ordinary Hermite polynomials H,(x) when y=-1landxis replaced by 2x.

The above result can be expressed in hypergeometric form as
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1- TN
eXt+yt? _ ye ZFO (—2,—2—?1.4)’/352)% e (13)
so that
1_
Hp(x,y) = ZFG (_E’T?l"4y/x2)xn s (1A4)

The following well-known results of Hermite polynomials H,, (x)

(_1)nt2n

et’ cos 2xt) = Xy Hop(x) 2n «(15)
—1yNs2n+1
et sin (2xt) = 32, Hyne (x)%j—n!— e (16)

are generalized by Khan et al [13,p.410(1.20) and (1.21)]) by employing the generating function [ 15,p.196]

_ 2 Ek i
pPHEHU)=(t4u)" o o0 g - s (1 T)

These results are special cases of the following results

_1ynp2n
e—ytz cosxt = E,T:onn(x:Jf)gﬂ—

@ e (1.8)
_ 2 . -1 nt2n+1
e " sinxt = T3, o P (x’y)(_(_sz_n':_ v (1.9)

Next we recall the definition of N-variable generalized Hermite polynomials H, ({x}}) defined by
Dattoli et al [5,p.602]

o t?
expXsiixt® = TaloHo(})) = - (1,10
where {x}} = x3,%5, ..., Xy

Genéralized Hermite polynomials H, ({x}Y) for N =3 also belong to those of Belll type [1] as shown in
[9.p.403(26)]. The Gould-Hopper polynomials g™ (x,y) (see [ § ]) is a special case of (1.10).The notation
Hy' (x,y) for g7* (x, y) was given by Dattoli et al [S ].These are specified by

pZtHYtS — Yo, Hi(z, J’):T. (L1
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Also, another special case of (1.10), the Kampe de Feriet polynomial H{’(x,y) (see [9]) is linked to (1.11)

by the generating function
o "
e#t+yt® = yo g, 5 o X1

Let us illustrate the case when N =3 in (1.10) which will be used in our next section. In this case we write

a generating function

epo:s i %st® = Yinui Hy (3 x2,-3x, 1) — = Y=o Hﬁ(x);—! ...(1.13)

Gould and Hopper [ 12 ] shown that

24 _ast2 43 " " (-1)" 3 (xt)"
e3x’t-3xt’ g-t? yo Hg(x) Eﬂ_o Z = il H2 ..(x) = Z;‘{;o—(:-l-!tlw(x ~ F)“

T=0ri(n-3r)!

which ultimately yield the formula to express an H3 sum in terms of an ordinary H,

5, P H 3 (1) = (V3N HaGaV3Y) . (1.14)

The object of his paper is to develop certain generating functions which arise from certain forms of
generalized Hermite polynomials which were defined and discussed in various papers of Dattoli et al [4] to
[11],Brafman [2],Bell [1],Cohen [3] and Gould and Hopper [12].The resulting formulas allow a considerable
unification of various results which appear in the literature. Most of the generating functions to be obtained here
involve arbitrary parameters and variables, so that generating functions are specialized for certain choices of the
parameters and variables.The starting point for the generalizations of the Hermite polynomials which we wish to
consider is essentially depending on the set of polynomials in hypergeometric form f, (x) given in section 2. This
approach is not entirely new, however even where a generalization of this nature has been explored in Khan et al
[13] and Pathan [14],by using different analytical means on their respective generasting functions ,many of the

results we find here do not seem to appear.

2. A SET OF POLYNOMIALS f;, (x).
For each integer n = 0 , consider the polynomial set

f)=p+2F (-3.55 @y By 0 2.0
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which includes ultraspherical and Hermite polynomials as special cases by writing generating functions of the

type
F(x.t) = Za=o(@nfu(x) fl—': 0]

For the definitions of ultraspherical , Hermite polynomials and hypergeometric polynomials p + 2° q Ve
refer [14].

Interesting special cases may be obtained from these general sets f,(x) by giving suitable values to
parameters and variables. In equation (2.2) omit the parameters a; , a, ,...., @p, take the denominator parameter

as 1+ a, replace x by (x* — 1)/x? and then t by tx. The result is on ultraspherical polynomials. Then omitting

the parameter before summing in (2.2) ,Hermite polynomials may be obtained. The result thus obtained (when x is

replaced by y) is
et pf (@ B)gi ¥7/4) = Taeop +27, (-3, 5%, (@) By N w5
Replacing t by anxt and then y by y/x? yields
et pf (@i B)g: ¥t2/4) = Ticop +2F, (—3,12",(a)p, B ¥/x) = .24

Now replacing t by it, using et = cost + i sint and the result
n=0 f(n) =Xn- F(2n) + X5 f(2n+ 1), .25)

in (2.4) and equating real and imaginary parts, we get

3. 2N 2N
cosxt p*, (@ (Bgi —Vt?/4) = TimoP + 27, (-m5 =1, (@) B)gs ¥/x?) * e X )
. F ’ 4 - g A 2y (—1)tx2ntigznl
-sinxt p* ((@p; (B)gs —¥yt*/4) = Li=op + 27 G—n1-n,(a)p; (B)g; ¥/x°) ey @7)

Since (1.3) is a special case of (2.4), we can say that (2.6) and (2.7) are generalizations of (1.5), (1.6),
(1.8) and (1.9) and Khan et al [13,p.410(1.20) and (1.21)].For another generalization of these results, see [14].

The non standard type of generating function
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(1 +4£2)73/2 (1 + 2xt + 42) exp (1 4:2) Y2 o Hy (x) .(2.8)

has been known for some time. This generating function and reference to Doetsch are given in Szego [16 ,p.371] ‘
and is given at many other references in the literature. A generalization of this result has been given by Brafman
[2 ,p.949] in the form -

242 242 242 2 2 242
2y-c {F ( L1 axtt ) 32cx“t 1F ( 1.5_ 4x“t ) 2xt(1+4t“—8ct®) . fp ( L3, axtt )
(1+4t%) 163 ) T 3(l,r,,‘tg)w% ety et R (63 Tae

(C)l n

o an(x)W ...(2.9)

which contains the arbitrary parameter ¢ and reduces to (2.8 ) for c = 1/2.

Now replacing ¢ by it, using e’ = cost + i sint and (2.5) in (2.9) and equating real and imaginary parts,

we get

1 —4x?t? ) 32cx?t?

- n In
(-4 17 (a3 c 17 (c+ 135 2D o Hon(x )M .(2.10)

2! 1-4t2 3(1_“2)“5 1-4t7 n!l(1/2)n
and
©, 1t"
2xt(1-4t2+8ct?) . 3, —&x*t? [n+3]
(1-4t2)cH Fa ( €3 T ) =Xin=0Hzns1( )[n+§1!(1!2)[n+11 e

Setting ¢ = 1/2 and using a connection between the exponential function and confluent hypergeometric

functions in the form (see Brafman [ 2 ,p.949])

expz = E%l""l(a+1;a+2: 2)+ 1F; (@a+1; 2),

. (2.10) and (2.11) yield

L]

242 -
(1 4t2) E exp ( 142:2 ) E'ﬂ'—o HZn( ) (

1)11 tzﬂ

(2127

and
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—4x2t? (-nne"

2x(1 — 4t%)73/2 exp ( T ) = Yn=oHzni () 2y ;..(2.13 )
respectively.
Next, we consider a generating function given by (1.13)
o Hn(3%%,-3x,1) L= DR HIWE = exp(3x%t - 3xt? + 1) AR}

On replacing ¢ by - 7 and adding we get

© 2n
exp(—3 x?t)[exp(3 x°t + t3) + exp(—3 x%t — t3)] = 2 Z Hon () (;n)'
n=o ’

Now replacing ¢ by it, using e = cost + i sint and (2.5) in (2.14) and equating real and imaginary
parts, we get

-1 ntzl‘l.
exp(3x t2)cos (3x26)= X, H3, (%) (z)n)!

(_l)ntzmn

exp(3x t?)sin (3xt)= X3-o H3ps1 (%) niD)!

On the other hand, if we take s =2 in (1.11) and replace x by 2(x + y) and y by — (x y + 1) and follow the
same method, then we get

exp((xy +1) 2)c0s (2(x +Y)0)= Eiwo(® + )" Han ( ok )1

x+y ) (_l)ﬂter'l

exp((xy + 1) t2) cos2(x + y)t) = T o(x + ¥)" V2H, 044 ( G2 ) ey

3. IMPLICIT SUMMATION FORMULAE INVOLVING SET OF POLYNOMIALS f,(x).

Here we prove the following results involving generalized Hermite polynomia'ls These results are

generalizations of (1.7) and (r1.8)and various well-known results of Hermite polynomials (see also Khan et. al

[13,p.410(1.20) and (1.21)])
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Theorem 3.1 For positive integers kI >0, the following implicit summation formula involving generalized

Hermite polynomials holds true:

Z _— (_k-i—il—k—[ _ _y_)
(x) p+2 . > T2 (@)p; (Blgs p
k1 ‘
k.. 1. (@Z—x)"m ~k-l+n+m1-k—-l+n+m y
=Y O OHE S @y Baa)
nm=o
..(3.1)

Proof. We replace ¢ by 7 + u (2.4) and rewrite the generating function as

B, (@ (Bgi Y(E+1)/4) = e X OO TR () p + 27, (-5 257 @y Bgs /x x?) L
..(3.2)

Replacing x by z in the above equation and equating the resulting equation to the above equation, we get

Sf1o@p + 2F, (5L @) (B ¥I7D)

- 0 K+l 1-k-1
= el ")(tJ'“)Zk,i:o(x)kP"'zF (-_t" == (a @)p; (Blg; y/xz) AT (3.3

On expanding exponential function,(3.3) gives

Zkt_o(z)kp"'zp ("k—JrlE 1k (e a)p; (Blgi J’/zz) P
- B R g ik 4 2F, (-5 @), @) v/ S
..(3.3)
which on using formula [15]
SHoofNER = 3o of(n+m) ST .(34)

in the right hand side becomes
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k+l ; thu!
D @+, (- 2@ B ¥/2°) 3

k.l=0

=T ma0 S (O W)™ TRi=o ()P + 27y (-5 (@), (B y/x?) B L35)

nim!

Now replacing k by k—n,1by t— p and using the lemma

T2eiofOLE) = TR T2 Fon — sk) .3.6)

with s = 2,in the right hand side of ( 3.5 ),we get

3 k+l 1-k-1 thut
Y @'p+2f, (- — @y B ¥/2)

k.l=0

_ S B 9 el (> W OO N oz k+l-n-m 1-k- l+ +
= 221-‘-0 nm=o nim! (k-?‘l)! (l-m)! (x)k np+2F ( 2 » —n ( )pn (ﬂ)q: y/xz)

Finally, on equating the coefficients of the like powers of ¢ and u in the above equation, we get the
required result. ’

Remark 1. On setting I=0 in (3.1),we immediately deduce the following cbnsequence of Theorem 3.1.

G p+2° (L5 @ O 5) = The DS 2+ 27, O 502 (@) Bl ) B)
which further reduces to [13,p.411(2.7) ]
He) =Ek=o() 20 = 2)Hi-n () | er)
Remarig 2. On replacing y by x+y in (3.7),we get

O p+2 (555 @y Bl LF) = Tho) S P+ 27 (5T @y B 09)

z2

Remark 3. When a = B and p=q so that (@), = (B)gi p,q = 1,2,...., it is possible to give some of the key
results for Hermite polynomials Hy,(x,y).First we note the following result using the hypergeometric form given

by (1.3)
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/9 Hi2) = ZtmmoCI (Y L (x = Y) ™ Hieon (x,2) -(3.10)
which is a special case of [13,p.416(4.6) ] when w=0.

Theorem 3.2 The following implicit summation formula involving generalized Hermite polynomials holds true:

yo, TERCHD oF (=2 (@) (B 4¥/Ix(n+ D) =Z22pF (@i B)gi y22/x?) ...3.11)

nix™" 1- lz

Proof. We use series expansion of the hypergeometric series p + 2F 4 in the left hand side of (3.11) to get

© z"exp (-zin) [—] y"x(n+)n2m
n=0 T aen Lim=o nl(n-2m)!

Now replacing n by n + 2 j and using (3.6) together with a result of Cohen [ 3 ,p.704(2.9)]

0, LHHDZEP I expz(isk +1) /(1) (3.12)
we get the resulting equation (3.11).

Remark 1. By taking @ = B and p=q so that (@), = (B)g; P,q = 1.2, ..., in equation (1.15)and using , we

immediately deduce the following result.

= 2 12
T2, LR CIn (i + 1), y] =ZEERE LX) .(3.13)

nlxn 1-lz
Remark 2. On replacing x by 2x and taking y=—1,the above result reduces to the following known result of
Cohen [ 3,p.705(2.14)] for classical Hermite polynomials

w 2zexp (- zln)H x) exp(z-z%/4x?) ...(3.14)

n=0 pi2x)n 1-lz

Remark 3.If we use the generating function (1.11) for generalized Hermite polynomials H3(z,y) in (3.11) in
place of p + 2F . then the following generating function for Hy (z,y) follows

yo_ Zen 2 ye 11y 4 1), ] ~SRERVZ/E) ..(3.15)

nixn 1-1z
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ABSTRACT

Cosmological model for barotropic fluid distribution with decaying vacuum energy (A) in FRW space-

time is investigated. To get deterministic solution and physical requirement of the model, we have assumed two
1
cases: (i) A ~F as considered by Chen and Wu [18] and (ii) A ~ p, p being the matter density. We find that

expansion in the model is large initially but decreases due to lapse of time. The model has decelerating and
accelerating phases both in case (i). But in case (ii), the model represents accelerating phase. The vacuum energy
(A) is initially large but decreases as time increases in both cases. These results match with the recent

observations. The special cases for dust, stiff fluid and radiation dominated phases are also discussed.

1. INTRODUCTION

A barotropic fluid is one whose pressure and density are related by an equation of state that does not
cortain the temperature as dependent variable. Mathematically, the equation of state can be expressed as p = p(p)
or p = p(p). Accordingly a linear equationmof state is p = yp, 0 <y < 1 is a special type of barotropic fluid, a
polytropic fluid with specific heat at constant pressure same as specific heat at constant volume. The

: mathematiéal form of equation of state includes dust (y = 0), radiation dominated universe (y =1/3) and stiff fluid

(y = 1) are considered in cosmological situation as particular cases. Thus the barotropic fluid p = yp determines

the matter content of the universe.
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A wide range of observations suggest that universe possesses a non-zero cosmological ' constant.
Zel’dovich [1], Dreitlein [2], Krauss and Turner [3] have studied its significance from time to time. Riess et al.
[4] and Perlmutter et al. [S] used Type la supernovae to show that universe is accelerating. This discovery
provided the first direct evidence that A is non-zero with A ~ 1.7 x 10" Planck units. It is commonly believed by
the scientific community that via the cosmological constant, a kind of repulsive pressure dubbed as dark energy is
the most suitable candidate to explain recent observations that the universe appears to ?e expanding at an
accelerating rate. Dark- energy is a special form of energy that permeates all of space and tends to increases the
rate of expansion of the universe. Linde [6] has investigated that A is function of temperature and is related to the
spontaneous symmetry breaking process. A number of cosmological models in which A decays with time have
been investigated by number of authors viz. Bertolami [7], Sahni and Starobinski [8], Beesham [9], Berman [10],
Abdussattar and Vishwakarma [11], Bronnikov et al. [12], Bali and Singh [13], Ram and Verma [14], Abdussattar
and Prajapati [15], Bali and Singh [16]. Recently Barrow and Shaw [17] suggested that cosmological term (A)

corresponds to a very small value of the order 10™'% when applied to FRW space-time.

In this paper, we have investigated cosmological model for barotropic fluid distribution with decaying

vacuum energy (A) in the frame work of FRW space-time. To get the deterministic solution, we have assumed (i)

1 @
A ~-l—{-2— and (ii) A o p where R is scale factor. The model has decelerating and accelerating phases both in case

(i) but accelerating phase in case (ii). The vacuum energy (A) is initially large but decreases due to lapse of time
in both cases. The special cases for dust distribution i.e. for y = 0 or p = 0, stiff fluid distribution i.e. for y=1or

p = p, radiation dominated model i.e. for y = 1/3 or p = 3p are also discussed.
2. METRIC AND FIELD EQUATIONS

~ We consider FRW space-time as

ds? =dt? -R2(1) [T%f +r2d6? + r’sin20 d¢2], ..(2.1)

where k=0, —-1,1.

L]

Einstein field equation with time dependent decaying vacuum energy (A) is given by

R} —%R_gij =—8n T/ -A() g, (2.2)
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~ where R; is the Ricci tensor, R =g Rij scalar curvature which measures the curvature of space. The energy-

momentum tensor for matter is taken as

T =(p+p)v,v' -p} - 23)

where p is the matter density, p is the isotropic pressure.

We assume the flow vector to be comoving so that vi=0=vi=vivi=1

The Einstein field equation (2.2) for the metric (2.1) leads to

52
3R° +£ =8mp+A(t) ..(2.4)

R?2 R?
and

2R R? k
= +R2+ 2=—8‘.r:p+A(I;) --—(2-5.)

The curvature equation

BT +A g;')_j =0
leads to

Sn[b +3(p+p) %] +A =0 | ..(2.6)

We assume that the universe is filled with barotropic fluid i.e. p=yp, 0 <y <1.Now equations (2.4), (2.5)

and condition p = yp lead to

2R R’ k
R q43)=—0+3)— +(+PA (27
R RZ( =-( Y)R2 a+v) )
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Case (i)

1
To get deterministic solution, we assume that A--E-z- as considered by Chen and Wu [18]. Thus equation

(2.7) leads to

! R? 1
2R +(1+3Y)—IT =E{(1-7)-(1+37)k}

From equation (2.8), we have

2
dF” d+37) 2 =¥:_{(1+y)—(1+37)k},

dR R

where

R =F(R).

Equation (2.9) leads to

2
O N (R e RS PR
dt 143y RW3

where P is constant of integration. Thus, we have

dR )’ _aR™7+p
dt | R 137

where

e 1+y "
M+ 3y

The metric (2.1) leads to the form

.-(2.8)

«+:(2.9)

...(2.10)

2l 1)

. K 212)
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ds’ =[ﬂt—)2dfl2 <R —Ez——+r2¢il¢92 +1’sin’6 d¢’ (2.13)
dR 1-kr? : e
which leads to the form
1;!-37 drz )
ds? = — _dr?q? +r2d6? +r2sin20de? |, {214
at™ +B 1-kr? ¢ B
where
1+3y
R=tandt= I —%;—d?—-
at 7 +p

Case (ii).

Let A o p which leads to

A=Ep ..(2.15)
¢ being constant. Now conservation equation (2.6) leads to
. R ,.
811:p+241t(1~|:'¥)p-§+fp =0 ...(2.16)
which leads to -
8+ )2 =-24n(1+7) > e
p R
which leads to
...(2.18)

© |o
I
|
g o)
~ | =

r

where
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_247n(1+7y)
"~ (8n+0)

From equation (2.18), we have

_ o
p == RB ]
where o is constant of integration. Equation (2.15) leads to

A=t
RP
Equations (2.4), (2.20) and (2.21), we have

3R? +3k __81ta+u€
R2 R?Z RP RP

In particular, if we take B = 1 then (2.22) leads to

R?=bR-k ,
where
b= &na +al
3
Equation (2.23) leads to

R < 4kb + (bt +2m)°

4b?
| Thus the metric (2.1) leads to *

ds? =dt?

4b?

_[4kb + (bt +2m)° [ dr?

2

+12d0? +r2sin20d7>

...(2.19)

...(2.20)

..(221)

.(222)

w:[223)

...(2.24)

ki 25)

...(2.26)
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In particular if we take . =1 =&, k=0, m = 0 then FRW model for flat space-time leads to
2 2t s o a0
ds” =dt —?[dr +1°d0” +rsin“0dd°], ..(2227)
' where
t2
R=— ...(2.28
4 (2.28)
3. PHYSICAL AND GEOMETRICAL ASPECTS
The matter density (p) and isotropic pressure (p) for the model (2.14) are given by
2-k(1+3y) 3B
8np= + ..(3.1)
T2 T3(I+y)
and "
3By 2y
&np= + 32
2?0 (14 3y)c?
The expansion (), the deceleration parameter (g), the spatial volume (R’) are given by
a P
Ly L {33)
1:2 TJ(I-l-y)
B(1+3y)1°
9=""3071) ¢y 3047) 4 .2 (3.4)
ot {ot +B1°}
R? =1’ ..(3.5)

The matter density (p), the isotropic pressure (p), the expansion (8), the deceleration parameter (gq), the

vacuum energy (A) for the model (2.27) are given by
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imt
t2
4y
P=?
fet
t
__1
1==3
40
A=—
t2
R? _t
64

SPECIAL MODELS :

() Dust Model: If y = 0 then we can discuss dust model for k= 0,~1,1.

(i) Stiff Fluid Model: If y = 1 then we can find stiff fluid (p = p) scenario for k=0, -1,1.

...(3.6)

(3.7

-(38)

...(3.9)

)

..(3.11)

(ii)) Radiation Dominated Model: If y = 1/3 then we can discuss radiation dominated phase of the

universe i.e. early universe for k=0, -1,1.

4. DISCUSSION

 There is a big-bang in the model (2.14) at T = 0 and the expansion in the model decreases at T increases.

The matter density (p) is infinite at T =0 and matter density decreases as T increases and p — (- when 1 — . The

decelerating parameter (¢) > 0 if B> 0and ¢ <0 if B < 0. Thus the model (2.14) has decelerating and accelerating

phases both. The vacuum energy density is initially large but decreases due to lapse of time. The spatial volume

increases as t increases. These results match with the recent observations.
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There is also big-bang in the model (2.27) at # = 0 and the expansion in the model decreases as t increases.
The matter density p — « if  — 0 and p — 0 when ¢ — 0. The deceleration parameter g < 0. Thus the model

represents accelerating phase. The vacuum energy density (A) is initially large but decreases due to lapse of time.

The spatial volume increases as t increases. For the model (2.27), the results also match with recent observations.
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ABSTRACT

- In this paper, we studied the impact of family planning program on society, run by state governments and
central government of India. We focused our study on the permanent method of family planning program i.e.
sterilization and identified some factors which might be helpful in bringing down the total fertility rate( T F.R,) to
a desired level. In this process, we applied statistical techniques like central tendency & ck;'-squm-e test of
independence and based on the study few measures have been suggested which may be'immensely useful for the

success of the program.

Keywords: Total fertility rate, Sterilization, caste, education, birth rate etc.
INTRODUCTION

Over population is a serious global concern and particular in developing countries like India. Since the

1970’s, India’s economic growth rate has risen significantly, poverty has declined and social indicators have

improved a lot. Nevertheless, a quarter (25%) (CIA world fact book -2012) of India’s population currently lives

below the national poverty line. In the present form, over population is swallowing all efforts of development
made by policymakers to uplift the living and health standard of country. Since the benefit of developmental
policies, natural resources which are limited, are not reaching to the society in the required volume. To cope with
this problem, in 1952, Indian government, first in the world formulated a national family planning program,
which has now become the decades old. During this period the National Family Program has expanded

enormously both in resource allocation and development of infrastructure. Setting up such a large organizational
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structure which penetrates deeply in rural areas is itself a praiseworthy achievement. The program has succeeded
in increasing family planning awareness and acceptance too, in the country. It is evident from the {act that among
all the methods of family planning 96% (Ramesh et. al., 1992) of currently married women recognized and
accepted at least one method of family planning. However, if the impact of the program is measured in terms of
the decline in birth rate, it is modest and below the expectation. India’s current T.F.R. is 2.50% (S.R.S.-2010 &
A.H.S. 2010-11)), which is still very high then the replacement level. India ranked at 81 among 223 countries in
terms of T.F.R., which is, clearly, not a healthy sign for future development (Country comparison: T.F.R. CIA
world fact book, 2012). India’s population is currently growing at a rate of 1.37 % (World Bank report-2012) per
year and about 70% (Adlakha, 1997) higher than that of China and will continue growing faster than China for
many years in the future. In our present paper, we focused our selves only on sterilization, because, this method is
permanent, one time expenditure and has the largest share in family planning program (census-2011). N.F.H.S. 2

&3 report indicates that 95% married women know of female sterilization.

In this study, an attempt has been made to identify the factors which may be helpful in bringing down the

fertility rate to the desired level and to suggest some new measures.

DATA COLLECTION, ANALYSIS AND DISCUSSION

For the above said study we have utilized the data of 1040 sterilized women from the two C.H.C’s
belonging to two states, namely U.P (Baraut) and UK (Bhagwanpur). For analysis we have two parameters in our
mind, one is caste and other is education, because in our society caste and education play important role in overall

development.
METHODOLOGY

For the analysis of above data, the technique of measures of central tendency has been used to get the
median age at sterilization and average no. of children ever born per couple. We used the chi-square test for
testing the interdependence of median age at sterilization and average no. of children with caste and education at

5% level of significance.
AVERAGE NO. OF CHILDREN, MEDIAN AGE AT STERILIZATION AND CASTE

About 96% of sterilized women are Hindu and includes about 25 castes. Keeping in view the large
number of caste and too few observations for many of them, the castes have been grouped into 3 categories. The

groups are as follows:
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Upper Caste  : Tyagi, Jain, Gupta, Agarwal, Rajput, Brahmin, Rao, Punjabi

Middle Caste: Jaat, Gujjar, Saini, Yadav, Naai, Pal, Upadhyay(jogi), Dhobi,
Prajapati, Kashyap, Muslim Teli, Badhai, Sunar

Lower Caste  : Harijan, Valmiki , khatik

TABLE 1: Distribution of Average Number of Children and Median Age at

Sterilization According to Caste:

linti Median Age at Average 10, of children per
sterilization couple at sterilization
Upper Caste 30 3.33
Middle Caste 30 3.63
Lower Caste 30 4.23
Average 30 3.80

Upper - Middle Lower




80 | GANITA SANDESH, Vol. 26, No. 1 (June2012)

It is observed from the Table 1 that median age at sterilization is equal for all the three categories but
there is variation in average no. of children. The average no. of children in the caste group I, II and III are 3.33,
3.63 and 4.23 respectively. These figure exhibits upward variation from the upper caste to lover caste which may
be due to general feeling of more hand, more earning in the lower/ weaker section of the society and hence
unwillingly they keep on increasing the population. The graphic picture also shows the upward movement when
we move from U{:per Caste to Lower Caste. It clearly indicates that average no. of children ever born per couple
depends on caste. Chi-square test also showed that caste and education are independent in terms of age at
sterilization and average no. of children per couple, since in former case chi-square (cal.) = 0.7071 and Ho is
accepted at 5% level of signiﬁcanbe, similarly in latter chi-square(cal.) = 0.0969. It is not significant at 5% level
of significance i.e. age at sterilization is independent of caste as well as education. The data clearly indicated us
that education was the major contributor in determining both age at sterilization and average no. of children per
couple. This is certainly a very interesting result that caste, now, no longer a decisive factor in determining the
demographic variables, rather it is economic status ,which is important now. The living standard of lower class
people is also low in comparison to other castes, because of their limited earning for livelihood. They are not well
known about the drawbacks of over population and think more members in the family can earn more money. So if
our policymakers may be able to eliminate the feeling of more people, more money from the mind of this section
and improve their living standard by creating job opportunities to them, then we may have a real check on the
population flood originaied by this poor section of society. The table clearly indicates the key role played by the

different caste in growing population. From the centuries, Indian society system has been dominated by the caste.
AVERAGE NO. OF CHILDREN, MEDIAN AGE AT STERILIZATION AND EDUCATION

There is clear evidence that the fertility percentage is higher of those belonging to an uneducated family,
whereas, lower of those who belongs to educated family. Education has been divided into four categories which

are as below:

i.  Illiterate: Neither read, nor put signature

ii. Primary: Passed at least fifth standard

iii. Secondary School: Passed tenth standard

iv.  Senior secondary and Above: Passed twelfth standard and above

TABLE 2: Distribution of Average number of Children and Median Age at

Sterilization According to education:
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[ T Median age at Average no. of children per
ucation
| sterilization couple at sterilization
|
i Illiterate 31 - 4.18
Primary 30 3.86
Secondary school 30 3.57
Senior secondary and Above 27 2.60

" Average No. of Children
(per couple at sterilization)

Hlliterate Primary Secondary school  Senior secondary
&above

» Education

Table 2 depicts that, as the education level of society increases, there is a considerable decrease both in
the median age at sterilization and average no. of children per couple. It also indicates that the female education
can play a key role in reducing the fertility rate. Actually, with the increasing level of education people get more
exposure to the modern society and perception of, small size family develops among the people. They tend to
think that with their limited earning they can providé better means of living and good education only to their small
family. Previous study also showed the inverse relationship between fertility and female literacy (How female
literacy affects fertility, 1990). Another important fact of decreasing fertility rate by the edﬁ;ted people is that,

they tend to get late marriage as compare to the illiterate people, due to their involvement in study and the child
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bearing span of women decreases. Singh et. al., (1985) also studied that no. of children depends on age at
marriage as well as on caste. So if our policymakers devote their all resources and means only to raise the literacy
level of female then this increasing population may be controlled. In this regard, Government of India should take
some concrete steps to improve the literacy level of females. Marriages, without having passed senior secondary
examination, should be declared as illegal. They can be deprived of contesting elections and holding any
democratic positions. The above graph also demonstrates the higher number of children to the illiterate couples

and lowers to the educated couples.

CONCLUSION

From the above analysis and discussion we reach at a conclusion that education is the only dominating factor in
deciding the age at sterilization, while caste and education both are the dominating factor for average no. of
children ever born per couple. So if our policy makers design their future strategies keeping in mind both these
factors, and then only we may have a real check on the rapid growth of population. Actually in Indian context
caste and education are positively correlated because of high level of unemployment in the lower section of
society (Desai and Dubey, 2011). This is the reason that people do not understand the disadvantage of increasing
population and either knowingly or unknowingly they get involved in the process of population flood. So our
planners should keep their focus on this lower section of society which is the ‘origin of highly increasing
population by creating job opportunities and improving education facilities, so that they can understand the

benefit of small family.
RECOMMENDATION
After analyzing and discussing the data collected, we:make the following recommendation:

i.  First of all, we strongly recommend that the age at marriage of women must be increased from the current
18 yrs, in order to reduce the child bearing span.
ii.  Female education up to senior secondary school must be made compulsory.
iit. A very handsome amount of cash should be given to those couples who get sterilization after one or two
children and give birth to first child on or after 25 years of mother’s age.
iv.  The current scheme of Janani Suraksha Yojna must be restricted only to two children per couple.

v.  All registered private hospitals should also Be recognized to provide family planning services.
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ABSTRACT

During past years Dragontir, Taneja and Pranesh Kumar have contributed a lot of work providing
different kinds of bounds on the distance, information and divergence measures. These are very useful and play
an important role in many areas like as sensor networks, testing the order in a Markov chain, visk for binary
experiments, region segmentation and estimation etc. In this paper we shall establish an upper and lower bounds
of information divergence measures in terms of Relative J-divergence measure using a new f-divergence and

inequalities.

Keywords: - Chi-square divergence, Jenson-Shannon’s divergence, Unified relative Jensen-Shannon and

arithmetic-geometric divergence of type s, Triangular discrimination etc.

AMS Classification 62B-10, 94A-17,26D15
1. INTRODUCTION
Let

L]

r ={P=(pl‘p2’ ........ P2,)
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be the set of all complete finite discrete probability distributions. There are many information and divergence
measures exists in the literature of information theory and statistics. Csiszar [2] & [3] introduced a generalized

measure of information using f-divergence measure given by

I_,(P.Q)=iq,f(%}, | (L

1

where f:R, >R, is a convex function and P Q€I . The Csiszar’s f-divergence is a general class of

divergence measures that includes several divergences used in measuring the distance or affinity between two
probability distributions. This class is introduced by using a convex function f, defined on (0, ). An important
property of this divergence is that many known divergences can be obtained from this measure by appropriately

defining the convex function f,

There are some examples of divergence measures in the category of Csiszar’s f-divergence measure.
Bhattacharya divergence [1], Triangular discrimination [5], Relative J-divergence [7], Hellinger discrimination
[8], Chi-square divergence [11], Relative Jensen-shannon divergence [12], Relative arithmetic-geometric

divergence [13], Unified relative JS and AG divergence of type s [14].
2. NEW f-DIVERGENCE MEASURE AND ITS PARTICULAR CASES

In this section we shall consider some properties of a new f-divergence measure [Jain and Saraswat, 9 &

10] and its particular cases which are may be interesting in areas of information theory is given by

i=1 2QJ

S,,-(P,Q)=Z”jq,f(u], o0 CB1)

where f:R, — R, isaconvex functionand P,Q€el, .

It is shown that using new f-divergence measure we shall derive some well known divergence measures
such as Ci}i-square divergence, Relative J-divergepce, Jenson-Shannon’s divergence, Triangular discrimination,
Hellinger discrimination, Bhattacharya divergence, Unified relative Jensen-Shannon and arithmetic-geometric
divergence of type s etc. in this section. An inequality of f-divergence in terms of Relative J- divergence measure
is established in section 3. Using the inequality of section 3, bounds of various particular measures are found in

terms of Relative J- divergence measure in section 4.
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The following results are on similar lines the result presented by Csisz"ar & K orner [4], Dragomir [6]

and Jain & Saraswat [9] & [10].

Proposition 2.1 Let f :[0,00) = R be convex and P,Q €', then we have the following inequality
S(P,O)2 /(1) o 2D

Equality holds in (2.2) iff

p,=q Yi=12,.,n i Tl

Corollary 2.1.1 (Non-negativity of new f-divergence measure) Let £ :[0,00) — R be convex and normalized,

i.e.

f()=0 s DAY

"Then for any P,Q e I, from (2.2) of proposition 2.1 and (2.4), we have the inequality
S, (P.0)20 -— ... (2.5)
If f is strictly convex, equality holds in (2.5) iff

p =g, Vie[t,2 ] ... (2.6)
and

S,(P,0)20 and S,(P,0)=0iff P=0 ... 27

Proposition 2.2 Let f&f, are two convex functions and g=afi+bf, then

S (P.Q)= as; (P,Q)+bS, (P,Q), where a &b are constants and P,Q €',

. . . - . .
We now give some examples of well known information divergence measures which are obtained from

new f-divergence measure.

e Chi-square divergence measure: - If f(0)=(t- 1)2 then Chi-square divergence measure is given by
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" 2
SARQ)%{ f"——l}%zzu’,@ .28

i=1 ']

* Relative Jensen-Shannon divergence measure:-If f(#)=—logt then relative Jensen-Shannon divergence

measure is given by

S (P il F(Q,P . 29
AP, Q)= Zq og[p%} (O.P) (2.9)

* Relative arithmetic-geometric divergence measure:-If S(t)=tlogr then relative arithmetic-geometric

divergence measure is given by

S,(P,Q)= Z[“’f ;q‘Jlog(p*zzq"]= G(O,P) ... (2.10)

2
* Triangular discrimination: - If f(¢)= -(t—tl)-, Vit >0 then Triangular discrimination is given by

Y 5=28P0) e

rrl j

* Relative J-divergence measure: - If 1(r)=(1-1) logs then Relative J-divergence measure is given by

Sf(P,Q)=Z:,[p’;q’Jlog(p'é;q’}%-fg(l’,@ 1)

f

¢ Hellinger discrimination: - If f(¢) = (1-—\/; ) then Hellinger discrimination is given by

P+Q P+Q
Sf(P’Q)=l:1_B[ 2 9Q]:,=h[ 5 9Q] . cee (2.13)

L]

* Unified relative Jensen-Shannon and arithmetic-geometric divergence of typea :-
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[a(a —1)]'l [r“ —l],a %0,1

If f(#)=1-logt fa=0 o (2.14)
tlogt ifa=1

Then Unified rclative Jensen-Shannon and Arithmetic-Geometric divergence measure of type & is given

by

FG,(Q,P)=[a(a-1)]" {iq, [%J -1} a 0,1

i=1

S;(P,Q)=Qa(Q,P)=<F(Q,P)=Zn:q,-log[pzf‘q J a=0 .. .15
: _N( 2t p+4q _
G(Q,P)-Z[ : )log( 2 J a=1

{ i=1
3. NEW INEQUALITY

The following theorem concerning an upper and lower bound for the f-divergence measure in terms of the
Relative J- divergence holds. The results are on similar lines to the result presented by Dragomir [3] and Jain &
Saraswat [9] & [10].

Theorem 3.1 Assume that generating mapping f :(0,00) - R is normalized i.e. f(1)=0 and satisfies the

assumptions.
(i) fis twice differentiable on (7, R), where 0<r <1< R <

(ii) there exist constants m, M such that

2

(1+1¢)

m=

f'osM %

L]

If P, Q are discrete probability distributions satisfying the assumptions
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Then we have the inequality

ZIP.Q)S,(P.0) s% J(P.0) .63

Proof: - Define a mapping F,, : (0,0) 5> R, F, (1) = f(1)-m(t~1) log#,Vt>0. Then F, (.)is normalized and
twice differentiable, Since
" oo om+n 1] 2
F"O=f()- ( )=—2 S"t)-m|>0 ... (34
(I+1¢)

-
& !

For allf e (r,R), it follows that F, (.)is convex on(r,R). Applying non-negativity property of £

divergence functional for F, (.) and the linearity property, we may state that

0<S, (P.Q)=5,(P,0)~mS, e (P,O) =S, (P.0) -;’;iJH(P,Q)

= OSSI,.(P,Q)-gJR(P,Q) ... (35)

from where the ﬁrst.; inequality of (3.3) results.

Now we again Define a mapping ), :(0,00) > R, F, (1) = M (t—-1)logt~ f(t), which is obviously
normalized, twice differentiable and by (3.1), convex on(r, R) . Applying non-negativity property of f-divergence

functional for £}, (.) and the linearity property, we obtain the second part of (3.3) i.e.

M
0= J(P.O)=S,(P.O) | wan (B

From (3.5) and (3.6) give the result (3.3)
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Remark.1 If we have strict inequality “>" in (3.3) for any 1€ (r,R)then the mapping F, (.)andF,, (.)are

m

strictly convex and equality holds in (3.3) iff P =0

Remark.2 It is important note that  fis  twice  differentiable on  (0,0)  and

2
<

1+

") <M <©,Yt e (0,%), then inequality (3.1) holds for any probability distributions P,Q .

4, SOME PARTICULAR CASES

Using Theorem (3.1) we able to point out the following particular cases which may be interest in

Information Theory and Statistics.

Proposition 4.1 Let P,Q € I', be two probability distributions with the property that

Then we have the inequality

o JR(PQ) F(QP)<( )JR( ,0) s BATY

Proof:-Consider the mapping / : (r,R) = R .
]
f(e)=-logt, f'(t) = —;,f =g Wl

So function is convex and normalized i.e. f(1)=0

L]

Defi r——zf"() ; [Lj: I
efine &)= n A+0\77) (+1)

Then obviously
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M= ,ﬁﬁ.ﬁ]g 0= (1 l r)’ = ir W80 = 1+ R) <42
Also from S (P,Q) = F(Q,P) (2.9)
From equation (2.9), (3.3) & (4.2)
T By PO S QLIS s (P.0) @)
Interchange P — O and prove of the result (4.1).
Proposition 4.2 Let P,Q €', be two probability distributions satisfying (3.2)
Then we have the inequality
(PO, 0)< (= 1,(P.0) 4y
(1+R) )

Proof:-Consider the mapping f : (»,R) > R .

f(t)=thgr,f‘(r) =1+logt, f'(¢) =%'> 0,vi>0

So function is convex and normalized i.e. f(1)=0

2

Define (1) =—— f(1) = 8 [1)= t
(1+0 1+n)\« 1+

Then obviously

Msong gl s I et . 45)

-
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Also
S f(P, 0)=G(Q,P) from(2.10)

From equation (3.3) & (4.5)

(TR?)J"‘P 0)<6. <

Jo(P,Q)
r)

Interchange P — Q and prove of the result (4.6).
Proposition 4.3 Let P,Q € ", be two probability distributions satisfying (3.2).

Then we have the inequality

2r’ 2R2.
TIPS PO

Jr(P,Q)

Proof:-Consider the mapping f :(»,R) > R .

F) =1, £'()=2t, f"(t)=2>0, V>0

So function is convex and normalized i.e. f(1)=0

¥ 2
Defi 1) = () =
ine 20) (1+:)f 0=
Then obviously
2R? - 2r?
M = sup g()=+—— = inf g(f)=

re[r.R] R) te[r,R] (1 + r)

. (4.6)

. (4.7

. (4.8)
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Also S,(P,Q) =% 72 (P,Q) from (2.8)

From equation (3.3), (4.8) give the result (4.6).

Proposition 4.4 Let P,Q€l’, be two probability distributions satisfying (3.2) then we have the following
inequality
]

mJR(P,Q)s

AL,O) |
4  r(+r)

J(P,Q) .. (49)

Proof:-Consider the mapping /' : (r,R) > R .

(z—i)‘{_( 1_) vy (11 —
t _.Hf 2 ,f(r)_(l-x—z-J,f(f)—

2
P

f@)=

f"(t)20 and £(1) =0, So function f is convex and normalized.

Define g(f) =—— /() == (EF 2
d+1) A+0)\F ) t1+0)
Then obviously
M = su 1) = , m= Inf g(f) = ... (410
=y T O Vel

Since S,(P,0Q) =%&(F,Q) from (2.11)

From equation (2.11), (3.3) & (4.10) give the result (4.9).

Proposition 4.5 Let P,Q € I', be two probability distributions satisfying (3.2).
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Then we have the inequality

r® R*
< P)< , L@
(I+r)JR(P,Q)<FGa(Q )< (1+R)J"(P 0) (4.11)

Proof:-Consider the mapping /: (r,R) > R .

[a@-D]"[*-1],a =0,

f(t)=1-logt ifa=0
tlogt ifa=1

fO=[at@-D]"[¢*-1].fO=[a-1]"t", /') =1 >0, V>0

So function is convex and normalized i.e. £ (1) =0

2 # 2 a
Defi t)= ") = 142) =
efine g(¢) (l-H)f() (l+!)( ) ash
Then obviously
M = sup g(r)= * , m=inf g()= h o (402)
relr,R) (1+R) rer.R) (1+7)

Also S, (P,Q)=FG,(Q,P) from (2.15)

From equation (2.3), (3.3) & (4.12) proved of result (4.11).
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