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Abstract
The model of single-species in a polluted closed environment is analysed by Freedman and Shukla [5].
They have utilized a modified logistic law for concentration of population biomass. Wg have reanalysed this
problem by u‘;ing generalized logistic equation. The new parameter introduced, gives us more ﬁéx:‘biﬁty in
specifying growth curves. The mathematical model is more general, thus includes the investigation of Freedman

and Shukla [5] as a corollary.
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1. Introduction

Pollution is the introduction of contaminantes into an environment. Environmental pollution by various
industries is one of the most important ecological problems. Uncontrolled contribution of toxicant to the
environment has led many species to extinction. Environmental pollution is closely related to the survival of
species. The effects of toxicanté. on various ecosystems have been studied by many investigators by using
mathematical models. Dubey [4] studied the effect of toxicants on forestry resources. Shukla and Dubey [11]
studied the depletion of resources in a forest habitat due to the increase of both population and pollution. Singh et
al [14] reanalyzed this model and observed that the resource biomass density settles down at a lower equilibrium
level than its original carrying capacity. Shukla et al [12] presented a model to study effects of primary and
secondary toxicants on the biomass of resources. The effect of toxicants in a single species is also investigated by
some investivators [1,2,5,6,7,8,9,13]. In this series Freedman and Shukla [5] presented a model for the interaction
of the population and the toxicants in the environment by the means of ordinary differential equations.

In this paper we have reformulated the model of Freedam and Shukla [5] by introducing & new parameter
for population biomass. The model is mathematically more general and thus includes the results of Freedman and

Shukla [5] as a corollary.
2. Mathematical Model

Non linear systems have always played an important role in the study of natural phenomena. The non
linear systems can have several kinds of behavior that are not possible in linear system. Assuming that the
population biomass follows genéralised logistic law for its growth, the expended mathematical model is

represented by the following set of differential equation [5].

dx

ar =" K(ry”
% = —50T—[x1x”T+1t|T|x"U+Q0 . (2])
CL_(;{ = —810 G a,an = YIXHU

 x(0)20,7(0) 2 0,U(0) > kx(0),n 21,
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where x(t) is the concentration of population biomass T'() is concentration of toxicant in the environment and
U (r) is the concentration of toxicant in the population. We assume that the toxicant in the environment is washed
out with rate 8, where 8 is the depletion rate of toxicant in the environment. Further it is assumed that toxicant
from the environment is absorbed by the populatidn in direct proportion to their concentration i.e. 0xT , where
o, in the second equation is the depletion rate of toxicant in the environment due to its intake by the population:

The toxicant in the population may also be removed from the total environment directly with rate §;, where 8, is

the depletion rate of the toxicant in the population. Toxicant may also be removed from the population in
proportion to their concentrations, some of it re-entering the environment and some removed from the
environment.

Finally, toxicant may be externally introduced into the environment according to some rate Q. In model
(2.1) 8y,8,,0,,k are positive constants and 0 < 7; < 1. And r(U) represents the growth rate “constant”

which is affected by U. d

Hence we assume -

r(0)=r >0, r'(U)<0 for U 20, r(ﬁ):(}'forsome{7>0 ..(2.2)

The death component in given by r,x™*'/ K(T), where K(T) represents the carrying capacity which is

affected by T. Hence we assume

K(0)=Ko >0, K'(T)<0 for T 20 (23)
K(T)=0 forsome T > 0.
The above assumptions imply the existence of U and T imply that if the toxicant level is sufficiently
high, then the population cannot reproduce or grow, and in fact will (K (?_") = 0). ‘Qp represents the rate of

introduction of toxicant into the environment.
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3. Stability Analysis

The system (2.1) has non-negative equilibria £, (0,0 / 8,0)and E(%,7,0) where

]

"o

o,f = [y, +3, [:‘-(U;()T(T”)]]U (2.5

This implies ' f‘—)—gﬂ as U—-0
0

The variational matrices corresponding to E, and £ are denoted by M, and M respectively and they

are computed as follows :

n 0 0
M, = "”;‘09". A
“éf” 0. -8
r /1 s ~wI1+1/n i o In ]
N KO E@E@)"O)K()
'”’(U) rl!nK(?‘;) r'(0) P
0
M= (—-alf'+ nmfﬁ’)ni”"' -8y — oy x" , Y X"
(alf “" Y]g) Hin_l ﬂtfn : '—Y[in - 81

We see that E, is a saddle point stable in T-U plane and unstable in x-direction.

Now we set the stability criterion for £ . We state the following lemma;
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Lemma 2.1. Theregion

A={(x,T,U):OSxS(Ko)Im,OST+USQ0 /8 where § = min{ﬁo,ﬁ,}}

is a region of attraction.

. dx _ __"  _n+l
Proof': e —r(U)x K(T)x
|
< nyx X, x
which gives  lim x(r) < (K, )”n
t=3o0
and T+U=-3(T+U)+(1-m)yxU + Q

lim [T())+U ()] < 0y /8
proving the lemma.
Theorem 2.3. In addition to assumption (2.2) and (2.3), let 7(U) and K (U) satisfy in A i.c.
K, <K(T)<Ky, 0<-K'(T)<k | .;.(2.8)
0<s-r'(U)sp

For some positive constant k,,, k,p then if the following inequality holds

5

Kok 0,0 - ) -

[n'bK—é: +—'8—°+n|ylu] <n K??-') (50 +a1x”) ...(2.9a)
Y10 2 ' ;

[np ¥ ‘TU + a,f"] <n K?f") (8 + y,s”) | .(2.9b)

[ﬂl"{l + 0y ]2 Kgn < (50 + ali”)(ﬁl 2 Ylfn) . : --.(2.9¢)

E is globally asymptotically stable with respect to all solutions initialising in the interior of the positive orthant.
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Proof : We consider the positive definite function about £
n  =n_ =n n oy o=n =12 w2
V(% T,U) = %"~ & = &', (x" 1 2")+1/2(T - F)" +1/2(V - 0)

The derivative of ¥ along the solution of (2.1) and after some manipulations we get

R e

(x” - :?")(T - T)[-rj:rgx"E(T) -oyT + “ﬂ'lg]

(- 2) (U - O) () + oo -] (T~ F)U - 0wy + ]

K {((T/ T#T
where E(T) = (T‘T) ..(2.108)
. k() i
wy 2
k()"
I‘_(b’_);(f})’ U #-,67
wv)=( (U-7) ..(2.10b)
r'(b-'), U=U

Hence dV/dt can further be written as

: % = —%an (x” —gn)z + a3 (x” _in)(T;—f‘)— ';"’22 (T-}")z

~\2

h_“——;au (x" _fn)z +a]3(x—f)(U" 0)—%033 (U—U)
. 1 Las(u-0)  ..@i)

-—Ean(r- T)+ay (T - :r“*)(U—L'Jf)_E

hn

where a) = — = @y =8 +0y¥", a3 =8 + ¥
K(T) .

ay = —rnx"&(T) - T + U, a3 =m(U)+ o -y U, ayy = (my +0y)x"

Then the sufficient conditions for dV7/dt in negative definite are’



-
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2

ajy —apayy <0 ..(2.12a)
2

aj3 —apa33 <0 ...(2.12b)

a3y — ayyazy < 0 . (2.12¢0)

Equation (2.92) — (2.12a), (2.9b) — (2.12b),(2.9¢) — (2.12¢)

Hence dV/dt is negative definite and so ¥ is a Liapunov function with respect to £ whose domain

contains A4, proving the theorem.

Corollary : For n = 1 the model coincides with that of Freedman and Shukla [5].

1]
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Abstract
Shannon entrapy is concave function of probability distribution. Maximization of Shapnon entropy is
simple due ta its concave nature whereas minimization is complicated. But minimym entropy prabability

distribution is necessary for complete information of probability distribution. In the present paper, aur aim is to

obtaln minimum Shannon entropy and .s'wi?ching poinis for minimum entropy for given values of Harmonic mean

and Second order moment,

Keywords:- Minimum Shannan entropy, switching point, consistent values of moments,

1. Introduction

Shannon [8] introduced a measure of entropy in 1948, this is given by §=—X7, p;Inp;

It is concave function of probability distribution. After this measure many other measures of entropy
came In oxistence, These are Renyi’s [7], Havrda — Charvat [3] measure efc. Since Shannan entropy is concave
function, a lot of work is dene on its maximization and its applieations.
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Entropy is maximum when probability distribution is as equal as possible . In this case we have minimum
information about system. As we increase information consistent with initial information in the form of moments,
entropy decreases. This decreases until we obtain minimum entropy probability distribution. In this case we have

complete information about system.

Maximum entropy probability distribution is most unbiased, most uniform and most random while
minimum entropy probability distribution is most biased, least uniform and least random. Entropy is concave

function so minimization of entropy is complicated than maximization.

Kapur [5] initiated the work to obtain minimum Shannon entropy. Anju Rani [2] obtained minimum
entropy for Shannon measure and Havrda- Charvat measure when one moment is prescribed. In this paper, we
have obtained analytical expressions for minimum Shannon entropy for given Harmonic mean and Second order
moment. Further we have calculated minimum Shannon entropy for six faced dice when Hafmonic mean and

Second order moment are given.

2. Minimum value of Shannon Entropy when harmonic mean and

second order moment are prescribed

-

Let x be a discrete variate which take all values from 1 to n with probabilities p,, py, ....... s Dn-

1 1/2
Harmenie mean and Second order moment of this probability distribution are prescribed as H and (uz)

i if2
respectively. There will be many distributions having these particular values of H and (1.12) and each of these

distributions will have a particular value of entropy. Out of these entropies our aim is to find minimum value of

entropy $ay Smin.

Mathematically we have to minimize .

S = —Zi=1pilnp; _ ‘ (1)
T i 1 ; ! ;
subject to, Ram=1, Y, 8=, Zhinf =, 2)

Since there are three linear constraints, the minimum entropy probability distribution will have at most

three non zero components. Let these be py, p, p; at points A, k and / respectively. Then from equation (2),

¥
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-1 P - -
Pn* Pk "‘Pl—l,f"'%"'?—ﬁ, h2pp+ k?py +Hpr= oy &)

solving these equations, we get

=

h[!(k+£)(k-—l-!)+!-l(ué~—k2j  MH(-p,)-hrr D)
Pr = T Hk-m(-m(h+k+D) Pk = THk—mI—R(h+k+l)

_1[H(n,—h®) -kl -B)]
Pt = TTHU=R U=k (h+k+1)

w(4)

To calculate py, , P & p; , we take set of values of Harmonic mean & Second order moment. All values
of Second order moment are not possible for given value of Harmonic mean. In fact there is a range for feasible

values of Second order moment for given Harmonic mean (Anju Rani [1]). These values are given by —

1/2.
(1) Minimum value of (}12) for given H is

When H takes discrete values

1/2

("_;) =H | ()

min

And, when H does not take discrete values,

! _ [HPP+L(3[H]*+3[H]+1)
(“2)mm [H]+L | ...(6)

where H=[H] +L, 0 <L <1, [H] is integral part of H.

(i) Maximum value of p_é for given H is

N gy B

\W1/2
For given values of H.M, and ("2) _, probability py is zero at point (1, A, A+1) or p; is zero at point
=% min

1/2 .
, probability p, = 0 at point (1, - 1, n). Probability
max

(4, A + 1, n) & for the given values of HM. and (pz)



108 | GANITA SANDESH, Vol. 26, No. 2, (December, 2012)

pn=0 for {ISh<k<H<Il<n}or{l<h<k<H<Il<n}andp =0for {I<h<H<k<l<n}

or {l<h<H<k<!<n}. As we go on increasing the values of pj, & p;, probability p, = 0 tends to zero.

1/2

For the given values of H.M. and (pz) , the values of entropies are same at all existing points & similarly for

min

1\1/2

the given values of H.M. and (uz) , the values of entropies are same at all existing points.

max

Every interval is divided into many subintervals such that at common values of Second order moment, the
values of minimum entropy for any two subintervals are same. These values of Second order moment are called

switching points. At these values, we switch over entropy from one set of values of (h,k,/) to another set of values

of (h.kD)

lLetH € (4, A+ 1], 1 <A <n,where 4 is an integer. s can take values 1,2,.....4; k can take values h+ 1,
oot = 13 [ can take values 4 + 1,......... .n. We/calculate probability distributions in each possible interval for

different values of Harmonic mean & Second order moment.

For calculating minimum entropy, we consider four types of points. These points are :

(N (4+a,4+B,n) ‘
(2) 1,A+a,4+7)

3) (A+a,A+8,4+F)

o) (LA+an)

1y 1/2
Before considering these points, we calculate minimum and maximum values of (“2) say

(- ,)ug and( ')”2 from equations (5), (6) and (7)
}l-z o ._Ll_z _— q ,_ .

For sonis. value of ué = (”2) , we calculate entropies at point (4, 4 + 1, n) and (1, 4, 4 + 1)

min
( for 4 > 1). By calculating these entropies, we can observe at which point entropy is minimum for given
Harmenie mean and Second order moment. Since at above points probability distributions exist and entropy is

minimum,.'”f‘hese points are considered as (4 + o, A + B, n) & (1,4 +a, 4 +y) by takinga =0, p=a+1,y=p.

Now, we consider four types of points to calculate minimum entropy for given values of Harmonic mean

and Second order moment. These are as follow:

e
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2(a) When minimum entropy occurs at point (4 +a, 4 + B, n) :

Minimum entropy shifts from point (4 + a, 4 + B, n) to one of the points (4 +a, 4 +A, A +Pp+ 1),
(l,A+o,4+y),(Ad+a,A+pn)and(l,4+a,n). Here B>a, A +y<ma < A < B+1, u#p.

First, we equate entropies at point (4 + a, 4 + B, n) with points (4 + a, 4 + A, 4 + p + 1) and
(1. 4+ a, 4 +y). By equating entropies we get two values of second order moment. Minimum value out of these
two values is considered as switching point. If both values of Second order moment do not lie in the feasible

region {i.e. probability distribution does not exist} then we equate entropies at point (4 + a, 4 + B, n) with

~point (4 + a, 4.+ p, m). If any switching point is obtained then minimum entropy shifts from point

(4 +a,4+ P, n) to point (4 + a, A4 + p, n) otherwise it shifts from point (4 + o, 4 + B, n) to point (1. 4 + . »n). So.
first we are equating entropies as follow:
SA+ta,A+B,n)=SA+a,A+1A+P+1)

from equations (1) and (4)

p1lnp; +q4Ingy+ryiInry = pylnp; +q;Ingy+r;lnr, ..(8)

Here py, q41, 71, D2, G2, 2 represent probabilities at corresponding points and expressions for py, g4, 11,
D2, G2, Ty can be obtained from equation (4) by substituting = A+ a, k=A+ P, /=nandh=A+a, k=4 +],
=A+B+1

Equation (8) can be solved for value (HZ)A (say).
Again, we are equating entropies as follow:

SAU+a, A+B,n)=S(,A+a,A+7)

p1Inp;+qIngy+7yInry = p3lnps +qzingstrsinrg .++(9)

thi ti be solved for value ’

is equation can be (”Z)B

Now, we check whether (ué) and (pzr) lie in the feasible region or not. When both values lie in the
A B

feasible region then minimum value out of these is considered as switching point. When any one value lies in the

feasible region then that value is considered as switching point.
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If (”2) lies in the feasible region and is minimum then minimum entropy shifts from point (A+a, A+,
A

n) to point (A+a, A+A, A+B+1), then

Swin= —P1Inp; — q;1Ing; — rylInry | for By < (}tz)A
min— - " I ) f ) = '
S p2lnps — qzIng; — r3inm, | or ("2)5 Ky

And, if (pé)s lies In the feasible region and is minimum then minimum entropy shifts from point
(A+a,A+p,n)topoint (1,4 + 0, A4+7). Then
Smin= —P1Inp; — q;Inqy — Iy, for My < (""2)3

Smin= —P3Inp3 — qzIngz — r3lnrs, ' for (pz)B < Hy

When both values of second order moment do not lie in the feasible region then we equate entropies at
point (4 + a, 4 + B, n) with points (4 +a, 4 + p, n) and (1, 4 +a, n).
Hence, SA+a, A+B,n)=S(A+a,A+pn)

p1Inpy+q,Ing,+71Inry = palnpy +q4Ingatryinr .-(10)

The above equation can be solved for value (uz)c.

Again, we are equating entropies as follow:
SAU+a,A+B,n)=S(1,4+a,n)

p;Inp;+q4Ing,+ryInry = pslnps +qsings+rsinrg -(11)
The above equation can be solved for value (“2)9'
"\ _ Hn?—=(A+a)(n+A+e)(n—H)
(“2)0 = = ...(12)

This expression can also be obtained by equating g, = 0.

When condition (MZ)P_ < (uz)c< (pz)n holds, then minimum entropy shifts from point (4 +a, 4 + B, n)

to point (4 + a, 4 + p, n) and from this point entropy shifts to point (1,4 + a, n). If above condition does not hold
then minimum entropy shifts from point (4 + a, 4 + B, n) to (1,4 + o, n).

s b

yi
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If (”2) lies in the feasible region then minimum entropy shifts from point (4 + a, 4 + B, n) to point
C

(A +ad+p, n), hence

Smin=—p1Inp; — ¢4Inqy — rylnry for Hy = (p'z).c

Swin= —PalnPy — qalngy — ryInry, for (Hz)c < By
Now, minimum entropy shifts from point (4 + a, 4 + p, ) to point (1, 4 + o, n).

Smin= —PalNps — q4Inqy — 147y, forp, < (””2).;.

Smin= —psInps — gslngs — r5lnrs, for (”2)[, = Hy

If (”2) does not lie in the feasible region then minimum entropy shifts from point (4 +a, 4 + B, n) to’
c

point (1, A + a, ). P
Swin= —p1Inp; — q4Inqy — rylnry , ) for i, < ("Z)D
Smin= —PsInps — gsIngs — rslnrs, for (”2)_0 = Ky

2 (b) When minimum entropy occurs at point (1, A+a, A+y):

While calculating we observe that minimum entropy shifts from point (1, 4 + a, 4 + y) to one of the

points (A +a, A +8,4+E&), (A+a-1,4+v,A+y),(1,4+0, A+ D), (1,4A+¥,4+7y),0r(l,4+y,n).
Here A+y<mA+E<n A+ P<n,a<d<{,a-1<v<y,ax'V.

" First, we equate entropies at point (1, A+a, A+y) with points (A+a, A+3, A+E), (A+a-1, A+v, A+y) and
(1, A+a, A+®). By equating entropies we obtain three values of Second order moment. We check whether these
three values lie in the feasible region or not. If lie, then minimum value is considered as switching point. When

only one value lies in the feasible region then that value is considered as switching point. Hence,
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S(1, A+a, A+y) = S(A+a, A+5, A+E)
P3inps+qsingatr;inrs = pglnps +qgingetrglnrg ...(13)
By solving equafion (13), we can get value (].12;)5.
Again, we are equating entropies as:
S(lLA+a, A+y)=SA+a-1,4 +v,A+y)
p3inpztqsingztrsinrg = p,inp;+q7Ing;+ryinry ..(14)

I '
By solving equation (14), we get value ("2) . Again, entropies are equated as:
F
S(l,A+0,A+y)=8S(1,4A+ 0,4+ D)
p3lnp3tqsIngs+r3inrs = pglnpg +qglnggtrginryg .(15)
here calculated value is (pz)c.

-Now, we check the existence of (ué)E, (ué)Fand (pé)cin the feasible region. If (pé)Blies in the

feasible region and is minimum then minimum entropy shifts from point (I, 4 + a, 4 + y) to point
(A+0,A+5,4+E). Then,

Swmin= —Pp3lnp3 — g3lngz — r3lnr3, for By < (HZ)E

I

Smin= —Psnps — qgIngg — 16InT7%, for (pz)E < p,z

Again, if (ué)F lies in the feasible region and is minimum then minimum entropy shifts from point (1, 4

+a,4+y)topoint(4+a-1,4+v,4+y). Then,

Simin= —p3lnp; — q3lng; — r3lnr3 for K, = (MZ)F
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r

Smin= —p7Inp; — qInq; — r5lnr, , for (M;)F S By

Again, if (pé)c is minimum then minimum entropy shifts from point (1, 4 + a, 4 + Y) to point
(1,4 +a, A+ D). Then,

Smin= —p3Inp3 — q3ingz — r3lnry , for Mé s (l-lé)c
Smin= —Ppglnpg — qglngg — rglnrg, for (p;)c < i-l;

When values of (p;)s ; (p;)p and (p;)c do not lie in the feasible region, then we equate entropies at
point (1, 4 + a, 4 +y) with point (1, 4 + ¥, 4 + y). By equating entropies as above, if we obtain any switching
point then minimum entropy shifts from point (1, 4 + 0, 4 +y) to point (1,4 + ¥, 4 + v) and if we do not obtain
any switching point then minimum entropy shifts from point (1,4 + a, 4 +v) to point (1, 4 + Y, n). Hence,

S(lLA+o, A+y)=S(1,A+¥,A+7Y)
P3lInp3tqslngs+r;inr; = pglnpg +q9lngg+rginrg ...(16)

Here calculated value is (u;)H.

Again, we equate entropies as:

S(LLA+a,A+7y) =SI(I,A +v, n)
p3lnp3+qsingztrainrs = pyglnpyg+qyglngso+ryginryg - (17)

Here calculated value is (ué) ‘
1

( ') _ H(A+y)?-(A+y+1)(A+y—H)
K l_

2 H o

The expression of (pé)[ can also be obtained by equating g; =0.

When condition (ué); (pé)]f (u;)l hplds, then minimum entropy shifts from point (1, A+a. A+y) to

point (1, A+¥, A+y). Where (ué)P is previous switching point and from point (1, A+¥, A+y) minimum entropy

shifts to point (1, A+y, n). In this situation,
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Smin= —p3Inp; — q3Ingz — r3lnr3, for Ky S (“2)1-{

Swin= —DolnPg — qglngy — r5lnry, for (!-12)“ sh
Now, minimum entropy shifts from point (1, A+ ¥, A+y) to point (1, A+y, n). So,

Smin= —PgInpg — gqlngy — rylnry, for (u;g)ﬂ = ”é s (u;)]

Swic==P10nP10 — G10InG10 — T10IN710, for (!-lz)l < 112

If condition (].I.Z)P< (HZ)H< (]‘.,12)[- does not hold then minimum entropy shifts from point

(1,A+a, A+7y)topoint (1,4 +1vy,n). So,

Suin= "‘pg]ﬂps = q3]l'IQ3 e rglﬂr3 5 for ﬂz < (p'z)l

Smin=—P10l0P10 — G10InG10 — T10!N710, for (HZ)I s Ry

2 (¢) When minimum entropy occurs at point (4 +a,4+9,4+8):

We observe from calculation that minimum entropy shifts from point (4 + o, 4 + 8, A + &) to one of
points (4 +a, 4 +0, A +&),(A+0, A+ & n)or (I, A+a,4+E). Hered # .

We equate entropies at point (4 + o, 4 + 8,‘A + &) with points (4 +a, A+ 0,4 + ), (A+a, A+ & n)or
(1, 4 + a, A + E). We obtain two values of second order moment. (Since by equating entropies at point (4 + a,
A+ 8, A+ E) with points (4 + o, 4 + & n) & (1, 4 + a, 4 + §), we obtain same value of second order moment).
Minimum of these two values of second order moment is considered as switching point.. If only one value lies in

the feasible region then this value is considered as switching point. So, we are equating entropies as:
S(A+a,A+8,4A+E)=SA+a,A+c,A+ L)
PelnpetqsInge+7sInTs = pralnpiatqiqIngs s +riqlnryy -.-(19)

Here calculated value is (pz)l.
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Now, we are equating entropies as:
S(Ato, A+3, A+E) = S(A+a, A+E, n)

PsInpgtqginggtrginrg = P12Inp12+qy2Ing 51y, Inr, .--(20)

Again,
S(A+a, A+8, A+E) = S(1, A+a, A+E)
PeInpg+qgIngg+rginrg = p13Inp13+q131nq13+r131nr13 : k2 1}

By solving equations (20) and (21) calculated value is (uz)x.

% - H(A+5)?-(A+a)(2A+a+8)(A+E-H) :
Here, (p,Z)K = 2 i (22)

The expression (pz)x can also be obtained by equating g¢ = 0.

When ("2)1:( (p2)1< (uz)x, then minimum entropy shifts from point (4 + o, A+ 8, 4 + &) to point

(4+a,4+0,4+E)and from this point entropy shifts to point (1, 4 ta,A+8or(d+o,4+E n). So,

Swin= ~PgInps — qgIngg — rginrg for By < (”2)]

Smin==p11Inpy1 = g1Ingyy — 7y Inry,, for (PZ)J = Hy

Now, minimum entropy shifts from point(A+a,4+0,4+&)to point (1, 4 +a, 4 + &) or (A+a,4+E& n). So,

Smin= =P11Inp11 — qy5Ingy; — 1yl for (“2)1 Sh, S (“2);{ |
Swin= =P12INP12 — q12Inq;5 — 1y, Inmy, or
Smin= =P13INP13 = q13Inqs3 — ry3In7y5, for (HZ)K S,

If condition (HZ): (pz)}<(p2)x does not hold, then minimum entropy sh‘|fts from point

(A4+a,4+38,4+E)to point (4 +a,A+§,n)orpoint(l,A+a,A+:‘;).

Smin= ~PgInPs — gglngs — rglnrg, for By S (”2) i

Smin= —py2lnp;; — q12Inqy5 = ry5lnry; or

Swin= —py3Inp,3 — 913lngy3 — 305, for (MZ)K < 112
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Now, we check that minimum entropy shifts from point (4 +a,4+8,4+&)to point (4 + a, 4 + &, n) or
(1,4 +a,A+E). For this, we calculate entropies at point (4 + 0, 4 + &, n) and point (1,4 +a,4+8) for value

My 2 (pz)K. The point at which entropy is smaller for (p;) & minimum éntropy shifts to that point.

2 (d) When minimum entropy occurs at point (1,4 + a, n):

Now, there are two cases:
(i) A<n-1 () A=n-1,a=0
i) When A <n-1: To study shifting of minimum entropy, entropies are equated at point (1, 4 + @, n) and
Ad+a-1,A+0,d+at 1). If we obtain any switching point then minimum entropy shifts from point

(l,A+a,n)topoint Ad+ta-1, A+a,A+a+1) Ifwe do not obtain any switching point then entropies are
equatedatpoint(l,A+u,n)w1thpomts(A+o.-—l A+€ A+a+2),Ad+a-1, A+ a+ 1, n),
(I,A+a—l,A+u+l)or(A+u—2,A+m,A+o;+l) Herea—1<€<a+2,a- 2 <@ < a+ 1. By equating

entropies as above we obtain four values of second order moment. Minimum value out of these four values is
considered as switching point. If only one value lies in the feasible region then that value is considered as
switching point. After this if we do not obtain any switching point then entropies are equated as above with
pomts(A+a-1 A+c,A+a+2andd+a-2, A+, A+ 1) as discussed with (4 +a - 1,4 + o,

A +a+ 1). Now, we are equating entropies as follow:

" S(1,A+a,n) =54 +a-1,4+0,d+at+l)

psinps + qsing s+ T5inrs = Pralnpiat G1410G14 + 14 In7y4 .+(23)

Here calculated value is (p;)L. When this value lies in the feasible region, minimum entropy shifts from

point(l,A+a,n)topoint(A+a- lLA+a,A+at]1) So, in this situation

Spin= —Pslnps — gsings — 7sIn7s Tt “z (" 2)

|
1

Smin= —P14NP14 — q14Inq14 — T14I0T14 for (PZ)L = ”2

If (p;) does not lie in the feasible region, then we equate entropies as: 1

L |
S(1,A+o,n)=S(A+a- 1,A+€, A+a+2)

pslnps + qsings + 7sinrs = PisinPis + q15Inqy5 + T1sinTys «.(24)
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By solving equation (24), we get value ("2) .
M

Again,
S(1,A+a,n)=S(A+a-1,A+a+1,n)
psInps + gsings + rsInTs = pygInpyg + G16ING16 + 11610716 ~A25)
By solving equation (25), we get value (u;)n ;
S(1,A+a,n)=S(1,A+a-1,A+a+]1)
psnps + gsings + rslnrs = py7Inps + G17InGy7 + 11710735 ...(26)

By solving equation (26) we get value (p;;)o 4

S(1,A+a,n=SA+a-2,A+we,A+a+1)

_ psinps + gslngs + 7s5InTs = pyglnpsg + G1gIngyg + 11glNT1g . 2T
By solving equation (27), we get value (u ) :
2/q
Now, we check the existence of values (HZ)M A (pz)N i (1.12)0 and (HZ)Q in the feasible region.

Minimum value out of these is considered as switching point.
If (pé) lies in the feasible region and is minimum then minimum entropy shifts from point (1, 4 + a, n)
M -
topoint(A+a-1,4+€,A+a+ 2), then
Smin= —PsInps — gsings — rslnrs , for Ky < (FZ)M '
Smin= —P15InP15 — G15Inq15 — 715in73s, for (HZ)M s )
If (p‘,;) lies in the feasible region and is minimum then minimum entropy shifts from point (1, A+ a, n)
N
topoint(d+a-1,4+a+1,n), then
Smin= —DPsInps — gslngs — r5lnrs, for By < (uz)N
Smin= —P16I0P16 — 916INq16 — 71610716 » - for (I-lz)N <K,
If (p;) lies in the feasible region and is minimum then minimum entropy shifts from point (1, 4 + @, n)
0
to point'(l.A +a-1,4+a+1),then

Smin= —PsInps — gslngs — rslnrs , for p, < (”2)0

Smin= —P17I0P17 = q17Inqy7 — 117INTy7 for ("‘2)0 = By
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If (pz)q lies in the feasible region and is minimum then minimum entropy shifts from point (1, A+a, n)
to point (A+a-2, A+m, A+a+1), then

Sin= _pSInpS - Q5lnq5 - TSIan P for ”2 < (MZ)Q

Swin= —P18InP1g — q18Inq1g — TygInT1g, for ("z) = Hy
Q

If we do not obtain any switching point, then we consider shifting of minimum entropy for point
d+ta-1,4+€ 4+a+2)and point (4 +a~-2,4+0,4+a+ 1), as we have discussed above for point
A+a-1,A+a,A+a+1).
When A4 =n — 1, a = 0: In this case, minimum entropy shifts _from point (1, 4 + a, n) to point
(A+a-1,4+a,n). So, '

S(lLLdA+a,n=SA+a-1,4A+a,n)

psinps + qsIngs + r51nrs = pyglnpy g + q9lngy g + ryglnryg ...(28)

By solving equation (28), we get value (p ) .
2/R
After this, minimum entropy shifts from point (4 +a-1,4 + o, n) to point (1, 4 + a - 1, ), then
S(A+a-1, A+ta,n=S(l,A+a-1,n)
P19InP19+q19Ingy911i9InTyg = Paglnpag+qaglngae+myglnry, ---(29)

solving equation (29) we get value (p.é)s. This value can be obtained by equating q;o=0.

' 2_ % i -
(l-lz) - Hn®-(A+a—-1)(n+A+a=1)(n—=H) ...(30)
S

H
Further shifting of minimum entropy is discussed as point (I, 4 + a, n) upto 4 +o.— 1 = 2.
In this way we have observed shifting of minimum entropy. But in the particular range entropies exist

only at points (1,4 + 1, n), where (4 + 1) vary from 2 to 7 - 1. We can obtain this range from equation (4) by p;

= (0 at points (2, 3, n) and (1, n-2, n-1) and from equat [ on (7) i.e. (ps) . We get following expressions.
max

2. ] !

Hn 2(n;2)(n H)<“2< li? s 1) = P.Qll._.]tl_)  for A>1 31)
12 -n(n-1- ! |

Hn—1)"-n(n—1-H) _. ﬂ2< (nR+n+1)- 2+D | for all values of A «(32)

H H
If these two conditions are satisfied then minimum entropy shifts from point (1, 4 + a, n) to point
(I,A+.1:,n),whene aLFET . ' -
S(l,A+a,n)=S(1,A+1,n)
PsInpstqsings+rsinrs = paqInpaq+q21Ingp +1p4Inmy,y «+(33)

By solving equation (33), we get value (“2)1'"

i
'@
{
f
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Swin= —PsInps — gslngs — rs5lnrs ,

Smin= —P21INP21 — q21Inq3y — 15111y,

given values of Harmonic mean & Second order moment.

for !.l.é < (ué)T

' [}

<
for (].12)1_ <h,
Hence, we have obtained the expressions for minimum Shannon entropy and switching points for the

3. Minimum value of Shannon entropy when harmonic mean and second order moment are prescribed : Six

faced dice :

Now, we calculate minimum Shannon entropy for a six faced dice i.e. n = 6. In this case we take HE(1,2],

(2,31, ..., (5,6] and for a particular interval we give different values to Harmonic mean. For the given value of

Harmonic mean, minimum and maximum values of second order moment are taken by Anju Rani [6]. Further we

calculate entropies for the different values of Harmonic mean & Second order moment and out of these entropies

we obtain minimum entropy. While calculating we observe that minimum entropy shifts from one set of values of

(h, k. ]) to another set of values of (4, k, /).

CASE-1 we consider the case when H € (1,2]. In this interval we take values H=1.25, 1.5, 1.75, 2.0. But in the

present paper we are considering only for H=1.25 and for others values of H entropies are given in table 2. Values

of entropies are given in the table 1 for given values of Harmonic mean and Second order moment.

Here h=1,k=2,3,4,5,1=3,4,5,6.
H=1.25

First, we obtain range of Second order moment, for given value of Harmonic mean.

1\1/2

1\1/2
From equations (6) & (7), (pz) = 14832 and (uz) = 3.0659
min max

com

1\1/2 1\1/2
o for (uz)mm , Smin = 0.67291 and for (pz)mx , Swn=0.55111 [table 1]
172 | 1.4832 | 1.6 18 | 1.8439 |20 |22  [22361 |24
L)
k|
123 | 67291 | .86426 | .76471 | .61088 :
124 | .67201 | .7808 | .85658 | .86107 | .83911 | .66634 | .57994
125 67291 |.73969 | 81221 | .82162 | .84493 | .8422 |.837 | .78908
12.6 | .67291 | .72329 | .77825 |.78777 | .81559 | 8367 | .8386 | .83887
13,4 61088 | 78567 | .67749 | .57994 |
13,5 61088 | 7234 | .77548 |.77793 | .75869
13,6 61088 | .68881 | .74183 | .74826 | .76697
1,4,5 57994 | 74428
1,4,6 57994 | .68975
1,5,6
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12| 2.6 (26458 2.8 3.0 |3.0659

;2.3

12,4 ‘
12,5 | .64077 | .56229
12,6 | 81679 | .8072 | .75919 | .63592 | .55111
13,4
1,3,5  |.63594 | .56229
13,6 | .76421 | .75905 | .72563 | .62489 | .55111
1,45  [.66046 | .56229
1,46 | .73814 | .74093 | .72712 | .63259 | .55111
1,5,6 56229 | 71656 | .66409 | .55111
Table [1]

Initially Sy, occurs at point (4 + o, 4 + B, n) i.e. (1, 2, 6). From this point S,,;, may shifts to any one out
of points(4+a, A+L A+B+1)ie. (1,2,3)or (4 +a,4+p,n)ie.(1,3,6),(1,4,6),(1,56).

HereA=1,A=1, n=234

We observe from table [1] that it shifts from point (1,2,6) to point (1,2,3). To calculate switching point we

equate entropies at these two points i.e.  Spin(1,2,6) = Syin (1,2,3)
From equation (8)

[p.;+24.8]' [u;+24.a] N [9.4—p;]l [9.4-p.] N [u;—2.2] [p;-z.z]

i 11y n

45 45 18 18 30 30
_ [u2+5] [p +5] [3.4- pi [3.4=p i -2.2] "[pz-z.z]
12 12 4 4

1\1/2
By solving this equation, we get (“z) =1.7943 and Sy, = 0.77698
1

1\1/2
Smin 0ccurs at point (1,2,6) for (i 2) € [1.4832, 1.7943]
Now, S shifts from point (1,2,3) to point (4 +a, 4+ B + 1, n) i.e. (1,3,6).
So, Smin(ls2:3) = Smin(ls3’6)

: 1\1/2 .
ForA+a=1&A+E=3 from equation (22), we obtain (].12) = 1.8439 and Sy, = 0.61088 [table 1].
r\1/2 2
Suin OCCUTS at point (1,2,3) for (uz) € [1.7943, 1.8439]

S,;.i,, shifts from point (1,3,6) to one ot: point (4 +a, 4+ A A+ P +2)ie (1,2,4), (1,3,4) or
(A4 +0,4+pn)ie. (1,2,6), (1,4,6), (1,5,6). But, here it shifts to point (1,2,4). A= 1,2, a <A< B +2.

Sm.in( 1 ,3 ;6) = Smin (] 52:4)

e e SR e S Ak

T T T IR T I R IINEIRI—,.
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Again, from equation (8),
[1,+66.6] [, +666] N [94-p,] [94-k)] +[iz:3'41- [k,~3.4]
(1)) 111 1ih)
100 100 20 20 25 25

_ [u;+1o.4]‘ [u;+1o.4] +[5—u:,_] l[S-p;] " [p'z—z.z] "[u;—Z.Z]

= In It
21 21 7 7 10.5 10.5

\1/2
By solving this equation, we get (pz) = 2.1542 and Syin = 0.73224
3

1/2
S, ccurs at point (1,3,6) for (”z) € [1.8439, 2.1542]

S,,, may shifts from point (1,2,4) to one of the points (4 + a, A+ o0, A+ p+2)ie (1,3,4) or

4+, A+p+2,n)ie. (1,4,6). Here s # A, 0 <o < B + 2. But we observe from table [1], it shifts to point
,1/2

(1,4,6). Switching point can be calculated from equation (22) for4 +a=1,§= B+2=3,s0 (“2) =2.2361
4

and Syn= 0.57994

\1/2
S,y Occurs at point (1,2,4) for (“z) € [2.1542,2.2361]

Further, Smi» may shifts from point (1,4,6) to one of points (4 +a, 4 + A, A+ B+ 3)ie (1,2,5), (1,3,5).

(1,4,5). We observe that it shifts to (1,3,5). To obtain switching point for this shifting we equate entropies as:

S|:|'.|in(l g496) = Smin( 1 1335)

Again, from equation (8)
[p2+116] I..[p2+116] . [9.4——;12] “[9.4-‘|.izl L [.6u2—3] hl[.6|.tz-3]
" 165 165 16.5 16.5 11 11
_[n,+47] [ I [7-1)) [n,-34] [1,—34]
- In + In + In
72 72 12 12 14.4 14.4

1\1/2
by solving this equation, we get (”2)5 =2.4943 and Syin = 0.72006
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i\ 1/2
Sumin OCcurs at point (1,4,6) for (“2) € [2.2361, 2.4943]
Swin may shifts from point (1.3.5) to one of points (4 + a, 4 + 6, 4 + B + 3) i.e. (1,2,5), (1,4.5) or
(A+a. A+P+3,nie (1,56). Here o# L a <o <+ 3. But minimum entropy shifts to point (1,5.,6).

Switching point can be calculated from equation (22) for4 +a=1,E=p+3 =4, so

1y 1/2
(u ) =2.6458 and S, = 0.56229
2/¢

1 1/2
Suin OCCUTS at point (1,3,5) for (”z) € [2.4943, 2.6458]

r

2) <94

For H=1.25 , n =6 from equation (32), we get 7 < (u

Since 4 + B + 4 = n, S, may shifts from point (1,5,6) to one of points (4 + a, 4 + 1, 4 + B + 4)
i.e. (1,2,6), (1,3,6), (1,4,6) and we find from calculation that it shifts to (1,3,6).
SO, Smin(] 9596) = Smin( ] :396)

From equation (8),

[n,+173] "[u;+1731 s [9.4-p] “[9.4—u;1 N [n,~7] lﬁ[u;—vl

240 240 9.6 9.6 10 10
+66, 3 i G- ’— . ‘— i
_[ite66] %666 [94-w,] [94-w)  [n,=34] L34
100 100 20 20 25 25

i\ 1/2
by solving this equation, we get (“2) =2.8149 and S,;;, = 0.72085
7

1/

i 2
Suin OCCUTS at point (1,5.6) for (“2) € [2.6458, 2.8149]

1/

' 2
Smin Occurs at point (1,3,6) for ("2) € [2.8149, 3.0659]

Similarly, we can obtain minimum value of Shannon entropy for other intervals like (2.3]. (3.4]. (4.5],
(5,6]. For these intervals values of minimum entropy and switching points are gi\;en in table [2].
4. The values of minimum entropy for given harmonic mean & second order moment in the
table form :
We have calculated minimum value of Shannon entropy and values of switching points for the

given values of Harmonic mean and Second order moment. These values are given in the table [2].
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IO Bl R I e

125 | 1.4832 | .67291 | 1.5 3.4 8424 | 2.0 | 2.6458 | 5623

| 16 | 72329 3.5256 | .94256 2.646 | 56298

1.7943 | .77698 3.6 | 91324 28 | 66185

1.8439 | .61088 3.8 77706 3.0 | 77793

2.0 68881 3.873 | .67291 32 | 87872

2.1542 | 73224 32172 | .88644

22 | 66634 | 1.75 | 1.8898 | .40994 3.3166 | .63641

2.2361 | .57994 20 | 49945 3.6 | 93584

2.4 68975 22 | 62459 37297 | 1.0091

2.4943 | .72006 2.4 73342 3.8 962

; 2.6 63594 - 24612 | .76429 4.0 | .66156

| 2.6458 | .56229 24785 | .6519 | 42 1.0226

| 2.8 71656 26 | 75967 42392 | 1.052

2.8149 | .72085 2.8 .87603 4.4 98336

.30 | .62489 2.9715 | .95115 46 | 82224

3.0659 | .55111 3.0 | 91231 4.6904 | .67291.
3.0938 | .68301

1.5 | 17321 | .63641 32 | 81948 | 225 | 2.3805 | .63641

1.8 68349 34 | 96119 24 | 65597

20 | .78199 3.4871 | 1.0019 2.4996 | .7168

22 8618 3.6 9057 2582 | .52978

2.2005 | .86201 3.7225 | .69049 26 | .55415

22361 | .69308 3.8 | .87489 27408 | .62326

24 | .80719 3951 | 1.0275 | 27689 | .45063

26 | .89299 | 40 1.0097 28 | 49329

2.6602 | .91327 43589 | .69271 '2.8047 | .49838

2.7689 | .68688 2.8087 | .47931

28 | 73218 | 2.0 2.0 0 - 29399 | .58617

3.0 | .88177 22 | 22019 3.0 | .53794

3.1131 | .92955 24 | 38604 3.0551 | .45064

3.2 86172 26 | 53141 32 | .58996

3.3166 | .67291 2.6457 | .56265 3.4 73516
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ry1/2 r1/2 1 1/2

H (l'lz) Smin H (“2) Smin H (“2) / Smin
2.25 | 3.4238 75029 25 4.9698 98601 3.0 4.1554 79978
3.4801 57239 5.0 .78879 4.2 80353
3.6 75044 5.1186 59297 44 .73857.
3.8 9234 4.5826 45663
3.9001 98406 2.75 2.8445 47378 4.6 .53059
4.0 192482 29 38812 4.7362 84121

4.2 62965 2.9388 18521 4.8 854
4.2032 61551 3.0 27083 5.0 .8485
44 1.0049 3.2 46498 52 75819
4.4297 1.0321 34 61671 - 5.3198 63436
4.6 98148 3.5697 72477 5.3852 5004

4.6765 94207 3.6 .68834

4.8 .84092 3.705 42521 3.25 3.3397 61726
4.9329 63641 3.8 .5903 34 .68691
4.0 79909 3.4286 .69698

25 2.6458 67291 4.0549 84235 3.4752 .48943
2.6646 70152 4.1174 73017 3.6 52456
2.8 61123 4.1341 67644 3.6268 42926
2.8636 32517 4.2 82664 3.6374 44175
3.0 48022 4,2933 .80458 3.7364 52579
3.2 .63944 44 .69079 3.8 .43809
3.3002 70652 4.4823 50669 3.8531 27123
3.3166 63641 4.6 .82598 4.0 51742
34 73502 4.665 92323 4.1716 69735
3.4752 79872 4.8 92065 4.1787 65278
3.6 53165 5.0 85811 42 67597
3.6056 5004 5.1698 72016 44 71296
3.6812 63303 52 67913 4.6 .55246
3.6878 61088 5.2657 54703 4.6658 39509
38 71819 4.7718 71223
4.0 84582 3.0 3.0 0 .4.8 3173
4.1147 .89991 3.2 26347 5.0 79257
4.2 .83574 34 44664 52 .76283
4,3589 56229 3.6 59663 54 61352
4.4 70828 3.6548 6332 5.4842 45458

4.5648 98601 3.7859 .34891

4.6 98413 3.8 38516 3.5 3.6056 68301
4.8 93219 4.0 66152 3.7 .68032

Contd...
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H NV H 2] sy H N
(“2) min (l’lz) in (“2) min
35 | 3.7431 | .64629 | 3.75 | 5.0311 | .82426 | 425 | 4.7108 | .50954
3.7796 | .41004 5.0569 | .81853 47465 | .36205
38 | .41089 5.099 | .73856 438 34747
39 23967 5.1381 | .61088 4.893 | .18079
3.9097 | .19144 5.2 64779 49 22267
4.0 36673 5.4 63763 | - 5.0 52532
42 60672 5.6 45877 5.103 | .70791
43328 | .72182 5.6213 | .41785 5.2 71039
4.3589 | .59823 5.6391 | .36689. 53629 | .67848
4.4 62707 5.4233 | .50841
4.6 57674 | 4.0 4.0 0 57533 | .29122
4.7359 | .34042 42 35606 57548 | .2845
4.8 .56845 4.4 57172
49119 | .78825 45114 | .66273 | 4.5 | 4.5826 | .68688
4,957 6519 45918 | .62667 4.6 69043
5.0 68628 4.6 160542 47019 | .65722
52 72553 4507 | .46368 47258 | .4507
5.4 6477 4.7 45129 438 3958
5.5435 | .47488 4.8 35356 4.8164 | .37698 -
55678 | .41004 4.8477 | 23395 4.8419 | 26426
5.0 66138 4.9 21248
375 | 3.821 5004 50724 | .76996 49329 | .12692
3873 | .42383 5.2 75611 5.0 37959
3.8987 | .24506 52214 | .75159 5184 | .71796
3.9 24547 52726 | .63793 5.1962 | .63641
3.9581 | .10637 52915 | .56229 5.2 63844
4.0 20441 5.4 59417 5.4 63203
42 48653 5.6 4965 5.4868 | .60067
4.4 67448 5.6877 | .36503 55377 | .4507
4.4448 | .70816 57009 | .32517 5.6 46023
4.4497 | 67291 577974 | .26268
44715 | .68907 | 4.25 | 43182 | .60575 5.8 25419
45 58688 4.4 61785 5.8023 | .24506
4.5092 | .52977 4.4192 | .46592
46 | .54 4.5 54854 | 4.75 | 4.8068 | .51477
4.7958 | .28681 45558 | .59666 4.8515 | .4511
48 31304 4.5568 | .57789 4872 | .27609
5.0 7853 4.6 57402 49 24121

Contd...
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i 1/2 ; 1\ 1/2 ' 1\ 1/2 :
H (‘12) Smin H | (“2) / Smin H ("12) / Smin
4.75 | 49109 | 22297 | 5.0 | 5.6933 | 43368 | 5.5 | 5.6889 | .47402

4.9258 | .15201 57271 | .32517 51 46861
4.9683 | .07008 5.8813 | .17191 57731 | .40868
5.0 21557 58822 | .16789 57918 | .30462
5.2 64926 5.8 30143
53308 | 77724 | 525 | 5305 | .59823 58597 | 24824
53754 | .57629 5.4 69271 58775 | .18500
54 58005 54926 | .73589 5.9467 | .09078

55965 | .51875 55033 | .59823 |
5.6 51082 5.6 5653 | 575 | 5.7973 | .52365
5.6382 | .38947 5.6458 | .53761 5.8 52034
5.8 30081 5.6695 | .41004 5.8358 | .52365
58421 | .21585 5781 | .3437 58533 | .29548
5.8445 | 20618 5.8 28893 5.8891 | .24869 |
5.8064 | .25732 5.9 19234
5.0 5.0 0 59144 | .13681 59014 | .17867
52905 | .67307 59161 | .12984 5.932 1421
52915 | .67291 59417 | .10475
54 67288 | 55 | 55678 | .68892 59746 | .04996
55051 | .64262 5.6 68973
55317 | .5004 56712 | 66527 | 6.0 6.0 0
Table [2]

4. Conclusion

We have calculated minimum Shannon entropy for the given values of Harmonic Mean H and Second

r

1/2
order moment (uz) . So, we observe that

r1/2
For given values of H & (“2) , entropies are same for all existing points and similarly for given values of H

min
& (1)

. When both moments take discrete and equal values, Spi, is zero.

1/2 ;
., entropies are same for all existing points.
max

1\ 1/2

We observe from calculation, number of switching points are small when (pz) is near to 1 & n and number of

1\1/2
switching point are large when (pz) is far away from 1 & n.



= .
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4. S, is a piecewise concave function.

5. On increasing value of second order moment for the fixed value of H, S,,, first increases and then decreases in a

subinterval.

(1

2]

13]

[4]

5]

(6]

171

8]
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Abstract

In this paper, we have given the definitions as well as integral representations of the complete set of

Lauricella’s hypergeometric functions of three variables by introducing three additional parameters. F ormulae of

differentiation of generalized functions have also been worked out. These formulae with parameters Ty,73,73

lead to many related applications of hypergeometric series of one and several variables.
1. Introduction

Srivastava [5] has given the definitions and the integral representations of the complete set of Lauricella’s

hypergeometric functions of three variables. Single integral representation of Appell’s function F3 and then

derivation of hypergeometric transformations and simple integral representation of certain hypergeometric

functions of three variables have been attempted appreciably by Srivastava and Singhal [8]. Al-Shammery and

Kalla [1] also presented the generalizations of Appell’s functions F}f‘"(w,z) (i=1,2,3) in terms of Gaussian

hypergeometric series ,Rj(z) in order to establish some integral representations, recurrence relations,

differentiation formulae for generalized Appell"s functions.

The hypergeometric series in one and several variables appear naturally in variety. of problems in

mathematical, applied mathematics, statistical distributions, investigation of operations, theoretical physics and
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engineering sciences. The results can be further applied in the derivation of integral representations of certain
hypergeometric functions of three variables as well as in the evaluation of the sums of certain triple series of the

hypergeometric type.

In Mathai [6] Lauricella four hypergeometric functions F, F, F- and F}, are defined. The set was

completed by Shanti Saran [7] who gave ten more functions.of three variables.

The integrals in the paper have been derived by means of fractional derivatives and integrals. The

-necessary rules of fractional integration by parts are as follows :

b

b o'
I —dx v-—-——-—dx - (LD
o(b-x)" . d(x-a)’

The fractional derivatives occurring in this rule can be defined by integrals, if real part of v is negative. Thus,

a(f’:_“a), o )_[( =" u ) dy
. » R(v) <0 . o (12)
’v _ —y=1
e r( = j(y %) v(y)aw
If u and v can be expressed by the series :
u=Y 4,(x-a)P*!
3 .. (1.3)
and V= z}.?s(t'a-—x)':"*hs'l
r=0

then the fractional derivatives are obtained by differentiating these series term by term and using the definition :

3" whl _ I whv1
ow' I(u-

.. (1.4)

for fractional derivatives which holds for all values of v except for v=p.

P



SHANU SHARMA and NINI VERMA / On Certain Generalized Hypergeometric Functions of Three Variables | 131

2. Definitions

In this section, we consider only the first four Lauricella functions R,,Rg,R- and Ry and the

"""remaining ten functions have been considered in the next section. These functions are defined by introducing

three additional parameters namely 7,7, and 74 . Their integral representations have also been derived as per the

rules given in section 1. These functions of Lauricella set are defined as

R ™7 (@, By Bas By 1572 Y33 % 1, 2)

- i I"(al +Tym+1Tn+ f3p) I"(ﬂl +TIM) r(ﬂz + 1.'2?3) F(B3 + 1'3p)

mnp=0 ™ In!p ! T(y;+1ym) (Y +Ton) I'(y3 +13p) I'(0y)

TOo)T()T(7s)
T(B)T(B)T(By)

x™y"zP L2.1)

for | x|+ y|+|z| <1, 71,75,73 >0, 71,75, 73 € R* )

Ty, T2, T . .
Ry ™ " (ay,02,03,B1, By, B33 Y15%, 1, 2)

_ i T'(a; +7ym) T(ay +7on) T(03 + T3p) T(B; + 7ym) T'(By + Tyn) T'(B3 + T3p)
m!n!p!T(y+1m+1n+13p) I'(ey) I'(ay) I'(a3)

m,n,p=0
r(}’]) m_n_p
. X z .. (22)
TBT(B)T By~
for | x| <1,|y|<1,|z| <1, 71,75,73 >0, 7,75, 73 € R”
RIS (@), Bis 71572, 733 %, 95 2)
" i I'(0q + Tym + Tyn+ 13 p) D(By + Tym+ Ton + 13p) F(yl)l‘(h)l"(h).xmy,,zp . 23)

winp=n ™ In!p ! T(y+7ym) D(yy +7on) T(y3 +73p) I'(0y) (B




|
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I

for |J;|+IJ;|+|\E| <1, 1,75,73>0, 71,75, 73 € R*

Rg’rz'rj (al)ﬂlsﬁzsﬂj.;y];xay:z)

ad i r(al tTym+Tn+ 1."3p) r(ﬁl + Tlm) r(ﬂz *® z.2”‘) r(ﬁ3 + ';'3}?)1“(}’1) T (W

~ z w24
o m\n!p'T(y) +rym+1on+73p) D) ) T(B) T(B2) I'(B3) by e

forlxl<l,|y|<l,|z|<l, 71,7T3,73 >0, 7,75, 73 € R*
The integral representations of the functions R 4, Rg, Rc and R, are as follows :

T TG -v) T2 Ty —va) T T —v3)
C)T(r2)T(r3)

Ty, T, T ¥ i
4 2@, By By By e vas st u")

111
= IIIxW—I (1 — x)?'l—Vl -1 yvz—l (1- y)?'g—vz—-l zv:-,—l - 2)73_;;3_|
000 '

R ey, By Brs Baivisvaovas(s0) ™ ()2, (u2) P dx dy dz, ..(2.5)
where

| s|+|¢]|+|u]|<1,0 < RO4) < R(1)30 < R(v;) < R(72)30 < R(v3) < R(73)

[(e) T - @) T(@y) T4, — @) (@) Ty —a@3)
T() T() T ()

gl

°R;}I,rz’r3[ila"1'2sﬂ’3’ﬂlsﬁ2,ﬁ3;yl;(Sx)rl ,(ty)fg 5(uz)r3]dx dde. -+(2.6)

RE ™ B ey, .03, By, By B3sy1ss™ 172 ,u™ ]

1 , _
xa,-l (1‘_ x)il_al_l yaz—.l (I _ y)j.z—az—] za;—l (1 _ z)i3"(l’3'|

0




SHANU SHARMA and NINI VERMA / On Certain Generalized Hypergeometric Functions of Three Variables | 133

where

|s]<L|t]<1|u| <150 < R@y) < R(4);0 < R(@3) < R(42);30 < R(@3) <R(43)

P =V L) Ty ~va) T T =vs)

7). 72, T3 ay, BV, Vns ;sf‘,tfz,uﬁ
T()T(2)T(7r3) ¢ U anBinrasrs )

111
= Ij-[x"l‘l 1-x)n™ 1yl - yyve-izi-lq_ gyrste-l
000

RETE B @y, fivisvasva ()™ () ()P Jd dy dz,..)

where
[V |+ 7 [+] V7 | <1,0 < Ro) < R():0 < R2) < R(72)30 < R(v3) < R(73)
T T = BOTB) T2 = B LB T3 = B3) | privrars o SR 4T T
T(u) T () T(u3) B AR PRI )
111
= I I Ixﬁrl (- x)m -Bi-1 yﬁz‘l (- y)#z—ﬂz*l éﬂs—' (- z)ﬂs‘ﬁs“'
000
R T [y, s s 3315 (5X) N (0) 2 (u2) P | dx dy dz,...(2.8)
where

|s|<1,]r|<1,

u|<1;0 < R(B) < R(1)30 < R(B;) < R(113); 0 < R(B3) < Rp)

Now, we give the proof of (2.5) and proofs for other functions are similar.

Let us consider
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b R e s

Os i=h g2 "2 gy Vi—y3

[SP"lsz-luh-lR;" 5 @y, B, Bas B3V Vo, vy sT Lt u™)

QVINHV2-Y2+V3=Y3 i (e + Tym+ Tn+13p) I(B, + 1ym)

asVIN rV27V2 gy¥37V3 = om Inlp! L(vy +7ym) T(vy + 73n) T(v3 + T3 p)

T(By +7ym) T(B3 +73p) T(V) T(Vy) T(V3)  vy+zym-1
['(ay) T(By) T'(By) T'(B3)

t_vz-a-tzn-l uv3+t3p—1

5 i T(oy + Tym + Tyn + T3 p) T(B) + 7ym) T(Bs + 7om) T(B5 + 73p)
B m!n!p!T(v+ ‘L',m) I'(vy +Ton) T'(v3 + T3 p)

. T y)I(v3)T(vy +rym)T(vy +7,0)T(vy +73p)
T(e) ) T(B)T(B) T(B3)T(ry +1im) T (y2 +79m) T(y3 +73p)

shttim=1 ya+tan-1, y3+73p-1

By using (1.4) and getting

T(v) T(v2) T(v3) o7, 73,
A
_ L'(y)) T'(r2) T'(v3)

T . LT Ty LT -1 ,y5-1 . 73~
3(ay, Br. By B3s¥1sY2s ¥3ss T 172, u™) ST 127 413

Hence

=1 ¥y~ -1 pT), 72, T . ol T2 LT
Sh fyz IuT3 RAI 5 3(a]sﬁ]sﬁ2’ﬂ3’]’]’723739s lJ 2;” 3)

_ I'(r) I'(yy) T'(73) _ JI jl jl Pt Vel vt
TV T -v) T(v2) T(r2-v2) T(v3) T(¥3-Vv3) § ¢ o

(5= P (= @) - )3TV RY 2 B (0, By, By By Vi Vo V3

-p",q™,r™)dp dq dr . (2.9)
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4

Putting p = sx, g = ty, r = uz, we get the result by using (1.2)

F(vl)f(yl —vT (W) T(ry —vy) T (v3)T(y3 —v3) 7). 73, 73 .
COOTGT(rs) Ra™ @By oy s

VsV ¥38 0,172 u™)

111
= IIIle-I (1 “x)?l"'"l"'lyi’z—l (1 _y‘}’z—vzhlzl':;—l(l - z)yl_y:‘_l
000 i

“RITT (@1, 11 Brs Byivisva V()™ ()2, (uz) P Y dx dy dz, ... (2.10)

where
| s|+[t|+]u|<1,0 < R04) < R(7);0 < R(vy) < R(75);0 < R(v3) < R(73)

Similar representations hold for other functions.

i) The remaining ten functions of the Lauricella set are defined as :

Rg.rz.rj (alyal!al’ﬂl’ﬁ2sﬂ2;yl’y2’y3;x’y’z)

- i (g +zym+ron+73p) DBy + rym) D(By + 1on+ 73 p) T(r ) T(3) T(y3)
min! p'\U(yy +1ym)T(yy +1on) C(y3 +73p) T(ey) T(B)OT(B,)

m,n, p=0
x"y"zP e LAY

RE™% (ay,@1,@1, By, Bas B 15 V25 V25 %: Y, 2)

o0

_ Z D(ay +rym+1yn+r3p)U(B) + rym+ 73 p) T(f5 +75n) F(Yl)r(Yzj
- m!n! p!T(y; +1ym)[(y5 + o0 +73p) T(ey) T(B)T(B,)

m,n, p=0
|

x"y"zP L (2.12)
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.77 = 3
RG™ (e, @, @15 By Brs B3s 1572, V25 %, Y 2)

i (e +r‘m+rzn+r3p}1“(ﬁ1 +7ym) (B, +1n) (B3 +73p) (1) ['(y;)

. m!n\p!T(y; +7ym) T (7, +Ton+13p) C(ea)T(B)T(B)T(B)

x™y"P L. (213)

r" ’r . .
RKI e 3(al"ZZsaz’ﬁl’ﬁz’ﬁl&ylvyZ?yi‘sxsysz)

) i [(a + rym)T(ay + 1on+13p) T (B +Tym+13p)T(By +1am) T(y ) T (12) T(73)
mint pIT(y; + ym)L(ry +Tam) D(y3 + 73p) T(@) T(@) T(B) T (S)

m.n,p=0
XMyl L (2.14)

7., T7.T . .
RV (ay, 00,03, By Bas P13 71:72:725%: V5 2)

I'(a; +rym)l(ay +7n) (a3 +73p)T(B +Tym+13p) T(By + 1M (1)) I'(77)

B ”é:o mint pIT(r, + im) L(rz + Ton + 73 p) T(@) T(@2) T(@3) T(B)I(By)

S s A R

7).T2.T ' . .
R (), 00,3, B1s Bas Bii 115725723 %: 1, 2)

_ i [(a; + 1ym)[(ay + Ton) (a3 +T3P) (B +rym+13p) (B, +1on) (1)) I'(y5)
mint pIT (7 +1ym) T(ra + Tan+73p) T(@) T(@2) T(@3) T(BT(B2)

m.n,p=0

xmy"zP ... (2.16)

R;’hfl‘f; (alaaz’al’ﬁl’ﬂl’ﬁz;yl’yz’yz;x’y’z)
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oo

. Z C(ay +rym+r3p)l(@; +1om)U(B) +tym+7,n) U(B, +13p) T(y)) T(y7)
m!n! p'\T'(yy +Tym)U(yy + 1on+73p) D )U(ay) T(B)T(B;)

m,n, p=0

-2 ytel LA

R;ZIJ?J] (alaa29a|'!ﬁlsﬁZ’ﬁl;yl’yz’yz;x’y’z)

_ i L(ey +7ym+73p)0 (g +7om) D(By + 1ym +73p) D(By +79m) D(11) L(72)
m!n! p!U(yy +1ym) U(yy +1on+ 73 p) D)) () T(B)T(B7)

m,n, p=0

xMyizP L 2B

R&™5 (ay,0,05, By By B33 115715 115%: 95 2)

L i [(a, +7ymT (a3 +7an+73p) (B + 1ym) L(By + 7mT(Bs +73P) L (1)

ey om In! p!T(y +Tym+1on+73p) (@) (@) T(BIT (BT (B3)

xMyZP L (2.19)
R;l.fg.f;; (a’l,az,aZsﬁ]sﬁZsﬁ];yl!yl’yl;x’y’z)

3 Z L(ay +rym(ay +7on+73p) [(B +1ym +73p) (s +1am) T(11)
min! p!U(y, +tym+1on+13p) (e (ey) T(B)I(B,)

m,n,p=0

e ...(2.20)

.The regions of convergence of the above series have been discussed by Shanti Saran[7].The triple

summation in the above series runs for m, n, p =9 to o,

Particular Case : When 7,,7,,73 = 1 in the definitions of the entire set of Lauricella’s functions, above

definitions reduces to functions given earlier by Srivastava [5]. By taking n variables and n parameters
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715725 Ty, We can define and give their integral representation for Generalized Hypergeometric Functions in a

—

similar manner to that of Garg, Mishra and Kalla [3]. l

The integral representations of the above functions are :

T() T ~)T0) (s =v) T(v3) (s = v3) | i.
()T (y3)

M.7, T
'RE! : 3(a],al’a]apl;ﬂZ0ﬂl;y]9y2’y3;Sﬁ’trzsurs)

111

= IIJxVI_I (1 _x)?’l-w-lyvz—l (1- y)?'z—V2—I ZV3—|(1 _ Z)y3—v3~l ?i

000 ' : !

1,

R B ay, 00,1, B, Ba, B3ivi Vo, v ()1, (9) 2 (uz)™ Jdx dy dz, ... (2.21) ‘

i

where 0< R(v;) < R(71);0 < R(v3) < R(7,)30 < R(v3) < R(73) il

|

{

Similar representations hold for R;, Ry, Ry and Rg viz. ‘

L(B) T = BT T(g - By) T(B5) T ~ By)
I'(4)T(4,)T'(43)

)

i.

RGP (@, @0, 1, Bas B3 v ¥as v 0T \

l |
A7 (=)A= y Bl (1 -y Bl g Bl (1 gy

I

'Rg’f'zvfs [alsahals‘alszﬁ’%;yl’rz*?ﬁ(sx)ﬁ 2(’}”)?2‘(“3)?}]‘3@&' w (222)

where 0'< R(A,) < R(4y);0 < R(By) < R(43);0 < R(By) < R(As)
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FW) Ty —v)T () Ty, =vy))T(v3)T(y3 —v3)
() T(r)T(r3)

7,73.73 4 ; 2 '
.RKI (al’a2’a23ﬂ]9ﬂzsﬂ])y|9y23y39srlsrr-qura)

111
— IIval-l (1 _x)}'l_l’l—t yVZ—I (1 _y)}’z—lfz-l zV3-—] (1 _ z)y3_‘_'3_l
000

'R;{I’rz,rs[alsa29a2sﬁ]’ﬂZ’ﬂl;v[aVZ’_vli;(Sx)ns(of)rzs(w)rj]dxdydz" e (223)

where 0< R() < R(71):0 < R(v5) < R(75); 0 < R(v3) < R(73)

I“(al)l“(/ll —al)f'(az)l"(ﬂz “az) l"(cr3)l"(/13 —a3)
F(4)T(A42)T(43)

.72, T
'R)\} ? 3(alsazsa3,ﬁl,ﬂz.ﬁ|;?’1.-72,}’2;-3'?'Jrz-ur“)

11
= -‘I xal_-l (1 _x)i,-—a]—l yaz—l (1 _y)ltz—ﬂz—l za;—l (1 - z)t?g—ﬂ':;—l
000

RN (A0 20,430 B1s By Bri 115721 25 (50) () (u2) P N dx dy iz, .. (224)

where 0 < R(a;) < R(4;):0 < R(@3) < R(4,);0 < R(a3) < R(43)

DA - BT Ty ~ Ao ) T () T4y - )
T T TG T ()

'r ,f 2 2 T
RSB (@, 0,09, 81, 2, B v v 118 0™

-

]
J! j j"ﬂ‘"“*x)‘*‘ﬂ"y”f’”(l—y)‘g“‘z"zﬂr’ (1- 25
000 ; |
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RSB ay,a0,03, 41,49, 43371, 71, 713 (0) ()2, (u2) P Nde dy dz . ... (2.25)
where 0< R(f) < R(4);0 < R(B,) < R(43):0 < R(fs) < R(43)

Let us now consider

V1 N*Ba-r24va-72

vi—=1.B-1. vl pT), T3, T3 g el 4T3 5T
35111 gP212 5212 [S UG (@1,01,01,B1, Y2, B3 vi» V2. Vais ™15 3)]
u

Y| {}’Z_I”TZ_I r(\.’]) r("'z) r(ﬁZ) 1'| T3, T3

a,d,a, By BriYi Y, ;Tl,f r3, T3
F(rz)r(ml“(n) (04,01, 00, B1, B, Bis 1,72, Y238 ™ (1)

Hence

Lyl 7l p T T s . : -
ST TR T B ey, e, a0, By, Bas Bis 115 V20 7238 () u™ )

() T(y2) T(r2) 4 T
F(VI)F(YI-VI)F(VQ)r()’z—vz)r(ﬁz)r‘(yz_ﬁz).[ .[ IP (s=p)

qﬁz-l(} — g2l vl _ pyra=va-l

R Bay, 00,00, 8172, Bivis Vo, vas pU (gr) R kP dpdg dr - ... (2.26)
Putting p = sx, q = ty, r = uz, we get

T(v) T'(vy = v) T(v2) T(72 = v7) T(B2) T'(72 = B>)
C(y)) T'(y2) T'(v2)

TIa T3, T . . ; T T
R ™3 Boyg, 04,04, 81. B2, Bis Y1, V2, Y2587 (tu) 3, u "3

111 '
= IJIxVI_! a _x)?’l-"r'yﬁz*' (1= y)?2~Fr-1 g7V (1 = )22
000
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-R;]'rz'rs[al,al»ﬂﬁ,ﬁl,?’z,ﬁl;V19V2,1’3;(Sx)rl~U“}’Z)f:' Juz)?ldedydz. ... (227)
" where 0<R() < R(7);0<R(vy) <R(72);0< R(B,) < R(yy)

Similar representations hold for Ry, . Rp, Rp and Ry

2 T2y , I T
R;} 3 rz[a[aa‘Z?aZsﬂ]9ﬁ29ﬁ]a}’]9},25}/29s ',(Iu) zsurz]

‘ L 319
1 b, r(}’l)r(h)r(?’z) w-leq = n-v-1,,0-
A\ TTw)T( =v)T) (72 ~v2)T(B) (2 = F2) JJ!x == y

(1 _y)?z—ﬁz-lz"z—l (1- Z)?2""2"|

RE ™2 gy, 05,05, By, V2, Bis Vi Vo, Vas (o0 (yu2) 2 (ue) 2 Y de dy dz, . (2.28)
where 0< R(v;) <R(71);0 < R(v2) < R(72);0 < R(B2) < R(y2)

R 2 [, 22,15 By Brs Basyi- 72,7 (sw)™ o172 u™ ]

111 '
= r(?’])r(}/Z) r(}/z) J. ’( xaz—] (l e x)?]‘ﬂg—‘ y1-'1—|
T(ay) T (71 —a)) T T(y2 —vi)T(v2) T (72 —v2) das _
(-2l - Zyr2—va-!
B R (01,7250, By Bi Bas Vi Vas Va3 (suxz) . ()2 ,(uz)™ ) dx dy dz, ... (2.29)

where .0 < R(ay) < R(71):0 < R(v) < R(y3); 0 < R(v3) < R(y3)

o Ty, T2
R:;hfs‘rs[al’azyalaﬂ]9ﬂ29ﬂ|;;Vlvy29y2§s l'!(tu) 33“ 1]
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To)T(2)T(2) j
0

11
- =l _ -1, Bl
F(Vl)r_(}’| v T () I(r, —Vv )T BT (2 - B) 6[6[1: TA=-x)1T1y

(1= yyr2=Pa-l Va1 5yra=ve-l
RP" ™ B[y, 09,04, By, 72, Brs Vi Vas Va3 (%) ,(tuyz)™3 ,(uz)3 ) dx dy dz, ...(2.30)

where 0 < R(v|) < R(7,);0<R(B,) <R(y2);0 < R(v3) < R(7,)

RIT T @y, a00,@3, B2, Bas B3 115 115 113 (s) ™ ()™ u™ )

1
X

LT j j a1 g gy i
00

“T(@)T(E-a)T(B) T =BT Ty —v1)

0

(=Bt vl - HNh=i-l

R ™0 T [E 0y, 9, By, By vis Vi Vi (swxz) ™ (tuy2) ™ (uz) ™ ] dx dy iz, .- (2.31)

where 0< R(a;) < R(£);0 < R(By) < R(1);:0 < R(v) < R(1)

The integrals deduced in the article 2(ii) can result into many special cases for hypergeometric functions

of two variables and generalized hypergeometric functions by Erdelyi [2].

3. Differentiation for the function R /"""

The formula of differentiation for the function R ™" (ay, By, B2, B33 715725733 %, Y, 2) is:

T8 (@, By Br B3 115725V 33%: V5 2)

axayaz

_Te+7+7+7) (B, +7) T(By + 1) T'(B3 +73) T'(71) I'(¥2) T'(73)
T+t I(r2 + 72) I'(y3+73) T(ey) T(By) T'(B2) T'(B3)
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(1]

2]

3]

T4 T3, T e
R (e O +7 473,08 +1,, 5, +79, 85 +73;% 1LY+ 79,73 + 735X, 9, 2) wos (351

66
axzayZGzZ [R;I'Tbﬁ (al’ﬂl’ﬂ2’ﬂ3;yl’y2’y3;x,y,z)l

- F(al + 21'] +27.'2 -+ 21.'3) r(ﬁ} + 2'1") r(ﬁz +272) r(ﬁ3 + 21.'3) 1"()/,) r()fz) F(y3)
[(n +21) Ty, +213) T(y3 +273) T(0y) T(B;) T'(B,) T'(B3)

R;" 2,53 (01 +27) + 275 + 273, B +271, 8y + 275, B3 + 27357, + 271,72 + 275,73 + 213;x,5,2) ... (3.2)

Now we can get the generalized formula as :

aﬂ
W[R;"rz’“(a,,ﬁl,ﬂz,ﬂ_,,;y,,y2,73;x,y,z)]
_ (e +n7y + 17y + 013) (B, +n1y) T'(B, +n7y) T(B; + n13) I'(v) T(y2) T(y3)
I(vi+n7) T(yy +n75) T(y; +n13) [(ey) T(B)) T(B,y) F(B;)
RY" ™ B (ay +nty + nry + 173, By + 171, By + 175, By + nt3y, + 01,7, +nTy, Y3 +0T35x,y,2) L. (3.3)

Similar differentiation formulae can be obtained for other functions also.
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Abstract

The supplier offers a fixed credit period to the retailer but the retailer does not offer any credit period to
its customers. In real practice, retailer may offer a credit period to its customer in order to boost his own demand.
In this paper, the impact of credit period on demand is studied when units of inventory deterioration follows the
Weibull distribution. A deterministic inventory model is developed to determine the optimal credit-period and
replenishment policy for the retailer.

KEY WORDS: Inventory, deteriorating items, Weibull distribution, credit-linked, demand.

1. Introduction

The concept of trade-credit was first introduced by Haley and Higgins (1973).They developed inventory
model to determine Economic Order Quantity with known constant deterministic demand under condition of
permissible delay in payments, no shortage and zero lead time. Goyal (1985) excluded penalty cost due 1o late

payment in Heley and Higgins model. Chung (1989) developed inventory model under permissibic delay in
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payments using the discounted cash flows approach. Shah and Aggarwal and Jaggi extended the Gopal’s model to
incorporate deterioration of units in the inventory. Jamal et.al.(2000) generalized the model to allow shortages.
Dye developed inventory model for stock-dependent demand for deteriorating items when partial back-logging is
allowed and trade-credit is offered. Dye and Chang (2003) formed a replenish-ment policy with liner demand ,
deterioration ,shortage and permissible delay in payment. Chang et.al. developed the optimal inventory model for
deteriorating items with instantaneous stock dependent demand and time value of money when permissible
delay in payments is offered. Teng et al. (2005) developed the optimal pricing and lot sizing under
permissible delay in payments by considering the difference between selling price and purchase quantity and
demand to be price sensitive. Goyal et. al.(2007 ) formulated an EOQ model for a retailer when supplier offers a
progressive interest scheme to make . the decision. Shah and Soni(2008) computed optimal ordering policy for
stock dependent demand under scenario of progressive payments.

In most of the business, the supplier offers a credit period to the retailer and retailer; in turn posses on
some credit period to customers. Huang introduced Ian inventory model when retailer offers a cr‘edit period to its
customer which is smaller than the credit period offered by the supplier, in order to boost the demand. The models
discussed above consider the effect of credit period on the objective function.

The impact of credit period on demand is ignored. In practice, it is observed that demand of an item does
depend upon the length of the credit period offered by the supplier to the retailer or retailer to the customer. Jaggi
et al. gave idea of credit-linked demand function to determine the retailer’s optimal creciit and replenishment
policy when both the suppliers as well as the retailer offers the credit period to stimulate the user demand. In this
paper, we also consider effect of deterioration which follows Weibull distri bﬁtion on optimal policy when demand
is dependent upon the allowable credit.

2. Assumptions

The mathematical model is developed under the following assumptions :

1. The inventory system under consideration deals with single item.
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2. The supplier offers a credit period 7; to settle the accounts to the retailer and the retailer, in turn, offers a

credit period 7, to his customers to settle the accounts.

3. The demand rate is a function of the customer’s credit period 7, offered by the retailer.

The demand function for D(%)any T, can be represented a- a difference equation.
D(T y+1)-D(T3) = r[Rp- D(%)];
where DT;) :demand for any 7} per unit time
R, : Maximum demand
r : Rate of saturation of demand with the initial condition 110)=R0 (initial demand )
The solution of the above difference equation is

D(T;) = Rol1=)'* + Ry[1=(1-)"?]

4. Replenishment rate is instantaneous.
5. Shortages are not allowed.

6. Lead - time is zero.

7. The deterioration of units in inventory follows the two parameters Weibull distribution
o(t)= aptP!

where & = scale parameter (0 <o << 1) , B = shape parameter (ﬁ > 0 )

8. Deteriorated units can neither be repaired nor replaced during a cycle time.

3. Notations

The follbiving notations are used in the model :

Q : Order quantity.

T : Cycle time.
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£ (t):The inventory level at any instant of time?, 0 < ¢ < T

A : Ordering cost per order.

C, : Unit purchase cost of an item.

S, : Unit selling price of an item.

h . Inventory carrying cost.

I, : The interest earned per Rs per unit time.

I ¢ : The interest charged per Rs per unit time.
T : Retailer’s credit period offered by the supplier for settling the account.
T,: Customer’s credit period offered by the retailer for settling the account.
PT,T,) : Retailer’s profit per unit time.
4. Mathematical Model
The inventory level gradually falls due to demand and deterioration. The inventory level at any time , is

governed by the differential equation

d;(t)+c91(t)- -D(T,) bErs?
- B=1
Since 9(!) B OCBI
. d;t(t)+aﬁfﬂ_11(f)=_D(T2) 0 < f-'S T D

_With the initial condition [/ (0 )= Q  and boundary condition I (T ): 0

I(I)=D(T2)|:(T—l)+ +]( ﬁ+] IBH) CH’G(T—I):I; 0<tr<T )
(neglecting the higher power of O )

and the order quantity is
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0 = 1(0) = D(1) |7+ 37 0]

+ I . (3)
The retailer’s profit per unit time compromises of the following components
S
1: Sales revenue SR. = £ 0 (4)
T e
c,0 |
2: Cost of purchasing PC= T (5
A
3 : Cost of placing orders O0.C. = ?— - ... (6)
Coh ¢
4: Inventory holding cost HC = ; f 1 (t).dr
T aff
=C hD(T,) —+ el
e i B

The calculation of interest earned and charged will depend upon 7' , 7] and 7, . The following cases

arise :

Casel: When T, < T, < T + T,.

Therefore the retailer generates revenue in time interval [Tz,_?;]and earns interest on sales revenue

-

for the time period [?] —7;].

# Inventory Level

/ » Interest Charged
/ » Interest Earned
» Time
0 T, T, T T,.T,
€l e 7 ;Tz
Interest earned per unit time LE, = ; j i D(Ty)¢dt

C, 1, D(B)(T; - T,)
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Interest charges are payable to the supplier by the retailer per cycle during [TI',T +Y;]0n the unsold

inventory after the due time7] .

Interest charged per unit time is given by

Cpl, (T+1-1y
IC = ‘;, [, 7 ar
- 1% -(f-T))" op ﬁ+2~
_ Cple D(T) [ 2 +(ﬁ+1)(ﬁ+2)(T+Tz'T‘)
T
of (T+5,-T) [, 5 B ..(9)
Bl {T -(T+5~-1) } _
Thus the retailer 's profit per unit time is given by -
P(T,T,)=SR-P.C- O.C-HC-LC +LE,
_ SpQ - CPQ _ i
S T 7
— YL af (B+1)
S e E
| 1“2-(1"2-1",)2 of . ;m-
_cpfeo(rz)[ 2 +(ﬁ+l)(ﬁ+2)(T+T2 f) +CPIBD(T2)(T|—T2)2
T - —— 2T
“_(_ﬁi;Fl{Tﬁ_(“Tz_mﬂ} |
=(s,-¢ )D(T)[H—“—Tﬁ]—ﬁ-c hD(T,) T 9B )
S P T T PV 27 (B+1).(B+2)
(12 ~(5-1.]), _ap p|
Cp"eD(TZ) [ 2 T(ﬁ+l)(ﬂ+2)(T+T2_Ti) +CpIeD(T2)(TI_T2)2
T 2T ... (10)
—-——aT(T;jf =) {T‘B ~(T+T, - Tl)ﬁ}
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Casell: When T, < T+L < T,
In this case, the retailer earns interest on the revenue received during the period [T,, T + T,] and on total
sales revenue for a period of (T,—T-T»).

Inventory Level

t

r

" Interest Earned
_ Time

0 Tz T T +T1 Tl

Y

Thus the total interest earned per unit time is given by
€l

T+T2 C, 1
‘;“"J'Tz D(Ty).-tdt + —2= T(5-T-T)

I.Ez =

(610 §
M _
- 2 D(TZ)(ZH T) ...(I])

The interest charged per unit time is given by
=9 ... (12)

Thus the retailer’s profit per unit time is given by

B(T.T,)=SR-P.C~ O.C-HC-1LC+1E,

= 5,0 _ —-—CPQ - ﬁ- ~ {1 ap (ﬁn)]

=~z - = C kD (T, 2+(ﬁ+l)(ﬂ+2)T
v DiEYar-1)

= (*?'p"CP)D(Tz)[H-BaTITﬂ]—% —Cpho(rz)(%Jr(_ﬁ:z_)T(ﬁﬁ)}

-

C,l
ple
=3 D(Ty)(21; - T) ..(13)
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Caselll: When T}, < T, S T+T,

Then interest charges are payable to the supplier by the retailer per cycle during (T, T, )on the inventory

and during (7,7 + T, ) on the unsold inventory after the due time 4P

A

/ ) > Interest Charged

[
>

Therefore the interest charged per unit time is given by

Cyls T+5

1¢; = -2 [('Lr2~—1",)Q+Lr2 I(T)df]

T

I

Cp 1. D(T)(T —T,)[l # ﬁirﬁ]

T )o@ [pBoi_ Bt g
(2 T2]+ﬁ+l{?‘ (T+15,)P '+ T }

B + +
e rD | (i

+CYP [(.D(Tz) ..’(14)

and interest earned per unit time is given by

I.E_‘].:O ---(]S)



VIPIN KUMAR,C.B.GUPTA and S.R.SINGH / An EOQ Inventory Model with Two Level Credit-Linked ... [ 153

Thus the retailer’s profit per unit time is given by

BT B)=8R-PC— 0C~BC 104 T

_ 5,0 G2 4 _ T ap B+
- = = CphD(Tz)[2+(ﬁ+l)‘(B+2)T 1)]
- CpLD(T)(T5 -T;)| 14+-2—7B
p1.D(B)(T> 1)( ﬁ+1T ]
T_ & B B+ B+l
—-Cpch(TZ) (2 ng+ﬁ+]{T (T+T2) +T2 }
o + +
TE a1
T +1
=(SP-CP)D(T2)|:I+-E%TB]—§ - CphD (TE{?"- (ﬂ 3 ]C;ﬂ(ﬂ N Z)T(ﬂ )J

-Cp 1, D(Tz)(Tz—Tl)(' + %T ‘BJ

T o -
2ol lpan Bt B+l |y B+l
(2 2)+ﬁ+i{T (T+T2) o }

ap B+2_ o B2 -+ (16)
+T(ﬁ+l)(ﬁ+2){(r+T2) % } "

-C,1,D(1,)

Hence the retailer’s profit per unit time is given by

Pl(Ta Tz)a TZ S T1 < T + Tz
P(T,T) ={ P(T.T), T, ST+ T, < T

e 1 17

which is a function of two variables 7" and 7, where 7 is continuous and 7', is discrete.
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Now, to determine the optimal values of 7" and 7, which maximize P (T, T, )

For fixed 7,, and maximum value ofP(T, T )

we have
OR(T.D) _ (g _ af np1, A_ 1,aprF
== {8, CP)D(Tg)(ﬂH)T - CphD (1) + 3
1 (@B-nP] . a8 ;... . spa, e(T+G-1)
—CPIcD(TZ){E*’ 7 }+(ﬁ+l)‘T+T2_Tl) + )
aB T+ B~ . a N C, LD(T
{TB-(T+T2-I’I)'3}+ P Eﬁ+l)2 I){T‘B'-(T+Tz*71)ﬁl}——p 2T2( 2)
(G-1)* =0
.. (18)
provided that,
32 P (T.Ty) o
oT 2
BPZ(T’TZ) ) aﬁ -1 A
and ——-'aT - (SP_CP) D(TZ)_-_(ﬁ+])T.B + F
1 aBTh] C,1.D(n)
—CphD(TZ){E-‘- ﬂ+2 }— & 2 =0 (19
provided that , t

\
l
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ABILD) (s _c \p(r) 2B 78, T__C hD(Tz]{ aﬁrﬂ}

and oT (B+1) ey
_CPICD(TZ)(TZ-]i)_(gfI)Tﬁ—I
| ] B apf 1
¢, 1 b() 5t G{T‘B—(T+T2) }' 2B )Eea) |-
¢, I, D(T,
P {(T+T2)B+2_T2ﬁ+z} N T(t};ﬁ )(T+T)ﬁ+lj
provided that,
0P, (T.T,)
0T’

5. Computational Algorithm

In order to optimize 7 and 7, simultaneously , we have the following steps.
Step 1: We start with 7, =1
Step 2: Find the optimal value of 7' using equations (18), (19), (20)
Step3: 1f0 < T, - T, < T then calculate B(T,T;) otherwise go to step5

Step 4: If P(T,T,)> B(T,T, —1)increment T, by T, + 1 and go to step2 otherwise current value of 7', is

optimal. Determine Q and P(T T5).

Step 5: If 0 < T < T, —T, then calculate P, (T,T,) otherwise go to step?

Step 6: If P, (T,T,)> P (T, T, - 1), increment T, by T, + 1 and go to step2 otherwise current value of T', s
optimal, Determine Q@ and P(T', T, ).

Step7: IfT, =T, S0 £ T then calculate P; (r.7,)
Step 8: IfR(T,T,)> A(T, T,- ~1), increment*T’, by T, + 1 and go to step2 othcrwwe current value of T, is

optimal, Determine Q and P (7, T, )
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6. Conclusion

In this paper, the effect of credit linked demand on the retailer’s optimal profit is studied and it is

observed that the credit period offered to its customer has positive impact on demand but deterioration negative

impact on retailer s profit.
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Abstract

In this paper we establish distribution properties involving gauss hypergeometric function and also find,

r™ moment about origin ,mean ,variance, Mellin transform. Further we find their mean time 1o failure, and its

reliability. The argument and parameter are restricted to take only those value for which the density Function are

non negative and have meaning.

All the matrices considered are real positive, definite and symmetric matrices of order pxp.
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1. Introduction

Laplace and Inverse laplace transforms

Laplace and inverse Laplace transforms of matrices variable are respectively given by equations

= tr(-T2) - ;
Lif@) = [, @ TOSD)dr = (2) (L)
' i p(p-1/2 (rTZ) _ f(T); T>0 )
e Gz L OO =0 e

Re(Z)>0

where ®(Z) is complex analytic function and integral is taken over Z = X +i Y with fixed X > X and

over the space S p‘ . S p* is the corresponding space of Z.
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For the conditions and details the readers may see Mathai [2],[3], Mathai and Saxena [1], Seemon
Thomas, Alex Thannippara and A.M. Mathai [4],

X
where J. = I means that the integral isover U > O, X > O, X — U > O and O denotes the null
O<U<X (0]

matrix of order pxp.

Sharma [5],[6],[7] obtained the Inversion formula for fractional integral operator of matrix variable
involving Jacobi polynomials, and generalized Stieltjes transform of Matrix argument .Integral Transform of

Matrix Variable involving Gauss hypergeometric Function.
2. Main Result
In this paper we define function

(p+D)

f( = |x1*"3

2

FP(—}I)FP(V+(£;:—]—)-—a)rp[v+6+y+-‘l-)—2ﬂ]rp(v+iﬂ} zﬁ(—y,v+6+y+£§—];v+£+—l;-/¥)
e (1)
I‘p(a)l“P(v+6+y+-}%l—aJl"P(—y-—a)

serve probability density function.

provided [ ren=1
: X>0

3. Computation of mean time to failure
The distribution F(7) is given as

T
F(T) = P(0< X <T) = [ f(X)dx,
0

where f(T) is called probability density function or it is known as failure density function.

F(T) =
T l"P(—y)l"P[v+(p;D—a]FP(v+8+y+£§ﬂ]fp(v+£;—lJzﬁ}(—y,v+5+y+pTH;v+ E—;—-!;~X}
- p+l
0 _ Cp(a)p v+8+y+——2——o: Fp(-y-a)
' oo 24D
X"~ ax ...22)
p+l

Let X = V T then dX =|T| 2.d¥ for fixed T,JU|=|T|[7| and respective regions
O<U<T, O<V <1 and using Mathai and Saxena [1,pg114,5.3.9], we get
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fr =T, (7)|T| ( p;-l) a]l"p[v+6+y+-pT+]]

+1 +1 +1 ~Lpth
Fp[v+£-2—)rp(p2 )3Fz[ —y,v+5+y+p2 ;v+p;];a+p;l—X]|X|a 2 dX

..(2.3)
+1 +1
l“‘(,(f.:|:+—p2 )FP (v+6+y+-‘?2——a]l“p(-y-—a)
where l‘p(v+(p;l)-a) l"p(v+8+y+p2 IJ p;‘
4. Reliability
The reliability of a component is the probability that it does not fail till 7 and it is defined as
RT) = P(X>T) = I-PO0<X<T) = I-F(T)
+1 +1
=I-T, (—1r)|1"|"‘1"‘,,(\.'+(p2 )—a)rp[v+5+y+p7]
_(ptD
I"p(v+£+—l)1‘ (PH) Fz(a,—y,v+5+y+ 2] v+p;l,a+P;I-X)|X| 2 dx
...(24)
+1 +1
l"p(oH‘p:2 ) P [v+5+'y+—-—““"2 —a]l“p(—y—-a)
5. Failure rate functions (Hazard rate function)
The failure rate function of the component denoted /(T) is defined as
f(T) ST
h(T) = =
) I-F(T) R(®T)
6. The moment of the distribution
The r* moment about origin of the matrix variable X with p.d.f (2.1) is given by
EQxn = [ |x"fxdx .. (25)
X>0
r (p+1) p+l
EflX|"] = f(X) = Tp(-p)Tp(a+r)Lp| v+ S ¢ Tp v+6+y+T
l"p(v+£§"—l 3ﬁ(a+r 'y,v+6+'y+—“!-;'~—1 v+p+l-- ]
2 2 2 2.6)

Fp(a)rp(y+5+y+%!-—a)l",,(—y—-a)

where Re(a) > -*-'L;—l-, Re(y+v+5+(p;].)) > pz-l, ReB>0

=0 , elsewhere
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| 7. Mean and Variance of the distribution

1
Ef(Ix|'1 = [ |x| feodx
"X>0
I"P(—y)l"P(a+l)I'p(v+(p;i)—a)rp(v+5+y+£;—l}
Fp(v+£;—l]3F1(a+l—y,v+5+y+£§tl;v+£;—];— ]
E[|x|'1 = = . .
I"P(cz)rp[v+8+y+£2~—a)rp(—y—a)
(p+1) ptl
And rp(_—]f)rp(a‘l'Z)rp v+ 3 - l"p V+5+Y+T
FP(V+—%I—)3F|(0¢+2—7,v+8+y+£§—]-;v+%-l-;—-/\’)
E[|x|*] = .. (2.8)

T‘p(a)l“p[v+6+y+—p—zﬂ—a)rp(—y-a)

By definition, variance = E (|X 2‘) —[E (| x])) 2 we get

l"P(-—y)l"p(a+2)l"p(v+(p;l)-ajrp[v+6+y+£~;—l]

Fp[v+£§-l]3ﬁ[a+2—y,v+6+y+£§-1;v+‘07“;— }

Variance = o
[p(@)p (v+8+ Y+ 22—- -a)l"p(-—y—oc)

rP(_Y)rP(a"'])FP(V"'(p;I) —a}l'p[v+3+y+£§i)




YOGESH SHARMA / More Distribution Properties of Gauss Hypergeometric Function of Matrix Argument ... [ 163

72
FP(\H-—PleJ F,(a+1—y,v+6+y+ip2il;v+ E—;—I;—XJ

T ...(2.9)
l"P(cx)l“P[v+5+y+£2—-a]l“,p{—y—a)
The various parameter are given by same restriction given by (2.1).
8. Mellian transform of the distribution
By definition of Mellin transform
5Pt
MUl = [ |X| 2 foax
X>0
I"P(—y)l"p[a+8—%l]rp(v+L;l)-a)rp(v+6+y+p7+1)
I‘P(v+—p—'|'—l)3ﬁ a+8—ﬂ—y,v+6+y+p—+l;v+£+—];— J
2 2 2 2 2.10)

Cp(a)lp (v+ S+7+ -‘%H - a)l“p(—}f ~a)

Particular Case : If we take matrix of order 1x1 i.e if we take p = 1, we get

1 Tp(NTp(vH1=a)T p(v+ 8+ 7+ DT p(V4+ 1), F(=7,V+ 8+ 7+ v+ 1;—x) (211

fG) =% Tp(@)Tp(v+8+y+1=-a) p(-y - )
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Abstract

Quadratic programming is a technique, familiar in Operations Research, Jor optimizing a quadratic

objective function subject to linear inequality or equality constraints. A number of techniques are available to Py

solve these problems. In this paper, a new algorithm is proposed to solve quadratic programming problem (OPP) e
which is based an least squares, In this algorithm, there is no need to transform QPP into an equivalent linear |
programming problem,

Keywords: Convex Quadratic Programming, Convexity and C oncavity, Cholesky Decomposition.
1. Introduction

Non-linear programming arises in the mathematical modeling of several problems in real world
applications. Some of the problems may be formulated as quadratic programming (QP) with a quadratic objeétive :
function and a set of linear equality or inequality constraints. The algorithms for quadratic programming have
been developed in the last few decades and different methods are available for solving the convex quadratic' -
programming problems such as extensions of the simplex method, gradient projection method, conjugate gradient
method, augmented Lagrangian method, active set method, interior point method and dual method etc. Wolfe [9]
has given an algorithm for this kind of problem that is based on fairly simple modification of simplex method and
converges in a finite number of iterations. Terlaky [8] proposed an algorithm which does not require the
enlargement of the basic table as Frank-Wolfe [3] method does. Here we proposed a new method based op the .
least squares for the solution of a convex quadratic programming problem. The method of least-squares for
optimization of quadratic functions is widely practiced. Boot [1] discussed the least-squares method of
optimization problem in several restricted cases. Let X is an n x n fixed design matrix, x € R" parameter vector

and consider the linear model Y = Xx + & . The method for minimizing Y- Xx|? subject to various linear
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inequality and equality constraints has been proposed by Judge and Takayama [7] which uses a simplex algorithm
to obtain the optimal solution x. Liew [5] used the principle pivoting algorithm of Dantzig and Cottle and
provided an approximate covariance matrix for x'. During this paper, we extend this work and propose an
algorithm to obtain the optimal solution for minimizing quadratic programming without transforming into

equivalent linear programming problem.

2. Cholesky Decomposition

Cholesky decomposition is a fundamental tool in matrix computations. Let us consider Q € R™ be a

hessian matrix of quadratic objective function of the proposed problem that can be Cholesky factorized as
Q = LL in which L is upper triangular with positive diagonal elements. According to condition of proposed

problem the hessian matrix Q to be positive definite and its Cholesky decomposition exists and unique.
3. Problem Formulation

Consider the following quadratic programming problem as:
Minimize f(x) = %x?‘Q xty' x+d

s.1. Ax=p .
x>0 (1)
n m mxn nxn . s M . .
wherex,y ER,BER ,AER " and Q€ R is positive definite matrix. The matrix Q may be Cholesky

decomposed as Q = L'L, where L is an upper triangular matrix with positive diagonal elements.
4. The Least Squares Problem

The linear regression model with non negative constraints has the following form
Y=Xx+e '

s.t. x>0 W (2)
where € = (€1, £2,...., &) is error term, YE R, x € R" and X€ R™ is design matrix. The estimation method is
Jeast squares, in which we choose the coefficients x = (x4 X, . xx)" which minimize the residual sum of squares.
The residual sum of squares is often called the sum of squares of the errors about the regression line and denoted
by SSE. This minimization procedure for estimating the parameters is called the method of least squares. Let us
consider following problem:

Minimize (SSE) = Z7u;( &) = Zha(yi= 9 = i (i — %o — xix)’ i)

s. t. . x>0
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for k = 2, we have § =xp—x1Xi, x = (xg x)" and given a set of regression data {(x;, yi) ; i=1,2,;. .n}, and a fitted
model, § = xo —x1x;, the i" residual &; is given by '
&§=yi—=9, 1=1 2. n _
The regression model with linear inequality constraints and non negative variables in the following form:
Y=Xx+¢g s.t. Ax>B,x>0 -

£=(€), E2y.0n0n &) iserrortermand Y = (Y1, Y2, - - - » Yn)-

The ordinary least squares estimator is used. This is found by the following procédure:
Y=Xx+e= e=Y-Xx
= ge=(Y-X0)(Y-Xx)
The vector x that yields a (" £ ) minimum is the least squares estimates of x. Now we obtain general regression
programming with the help of least squares method as follows: |
Minimize f(x) =(Y - Xx)'(Y - Xx), Subjecttoa’ix>p; x>0, ki)
where X=L, Y =-= (L')'y | '

5. Algorithm
The algorithm for the solution of minimizing quadratic programming problem has following steps
Step 1. First we find out the matrices X and Y by Cholesky decomposition of positive definite matrix of given

quadratic ~ programming  problem  and for  this  construct  unconstrained  problem  as:
Minimize f(x) =(Y - Xx)" (Y - Xx).

Step 2. Find the critical point x"of above unconstrained problem and if “the critical point is inside the feasible
region of quodratic programming problem then this critical point is optimal solution and process terminates. else

go to the next step.

Step 3. Create an index set P; = {i: a'x < B, }# @ for which the (single)constraint violate al the infeasible point

and find out following equality constrained problem
Minimize fix) =(Y - Xx)'(Y - Xx), s.t.a'ix =p;, i€P,.
solving this problem and denote the solution by 2,

Step 4. Check the feasibility condition by creating an index set R, = {i: a'; x> B, i€P, } and check whether R, is

a non empty set. If “ves”, then X", i€R, is the optimal solution of the QPP and stop. If “no” then again creating a

set P,—R, = {i:a";x” < B, i € P} and increase by r=r+1 and create the in‘gex set P= {(i1,iz....i0); @ligx™ Y

-
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<Bi (in,...ir1) € Pry- R}, Solve the problem with linear constraint a;, x™~ = B, | (iy,.....i.,) € P, and

denote the solution of this problem by x/"~ .

Step 5. Again check the feasibility condition as J, ={(iy,iz..ir): 8" x> B, (iy,....i;) € P,} is non empty if yes
then above solution is optimal and if not then repeat this procedure until R, + @, and Jind out the optimal

solution.

Numerical Hlustration:

Consider a quadratic programming problem as:
Minimize f(x) =x, + x;° - 8x, — 10x, Subject to-3x;,-2x;> -6, x;, x,> 0
The algorithm is as follows:

Step 1. Find X and Y as:

X 10 -8
A= (-3-2)x= Q= ) ,andf = -6

X2 01 -10

Ly iz 10 4
X = Cholesky(Q) = = = ‘2'1‘(LT)'17 g

0 I 01 5

The unconstrained quadratic optimization problem becomes
Minimize f(x) =(Y - Xx)"(Y - Xx) = (4 —x))*+ (5 - x3)°
Step 2. Find the critical point x'= (4 5)" and this critical point is outside of feasible region of quadratic
programming problem then this critical point ( infeasible point) is not optimal solution of the problem.
Step 3. Now we create an index set P ;= {1}#® for which the constraint is violated at this critical point and find
out following equalitv constrained problem:
Minimize ffx) = (4 - x;)*+ (5 - x)°

subjectto —3x;-2x; = -6,
and the solution of this problem is x= (0.307692, 2.538462)" .

Step 4. Now we check the feasibility condition such that R;={1} # @ then this solution is optimal solution and
optimum value is -21.3077.
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Computational analysis of this problem

Input Data

X; Toral Sign Limits

Objective Function

OP -21.3077

Constraint

2 6 <= 6

v
I "“g‘}f

Non-Negativity

=

Output Results

X/

X; Jx)

- 0.307692

2.538462 -21.3077

Results
Target function (Minimum)

Name Origina! Value

QP -21.30769225

Adjustable variables

Name Original Value

Final Value

Mmoo CI0TRIIZTY
X 2.538461514

0307692317
2.538461514

Name _Variable Value

__Constraint First Totql

5.999999978

ke - 0307692317
X2 2.538461514

g B ;

Not Biﬂdi’f&. .

__Not Binding _ 2.538461514

Sensitivity Analysis
Adjustable variables

) Final Value Reduced Gradient

0.307692317 0

.. 2538461514 ¢

Name

Final Value __ Lagrange Multiplier

Limits of the variables
Obj, function Value

oP -21.3076922

Constraint First Total

.. 2:999999978 -2.461337167

~ Variables  Value L Limit
X 0307692317 0

X 2538461514 0

-18.94082828

B Uﬁ;er_Limix —wf'ﬁ;gét Result
21.30769231
-21.3076923]

Target Result
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6. Conclusion

The aim of this study is to present an algorithm for finding an optimal solution of convex quadratic

programming. The principle of this algorithm is based on critical point of least squares problem. If the critical

point of least squares lies in the feasible solution then this critical point is also optimal solution and it does not lie

in the feasible solution then we construct an equalily constraint problem with violation of constraint and solve it.
This algorithm is efficient as compare with the other method and requires less time 1o soive the problem. We
therefore, hope that this algorithm may be used as an effective tool for solving convex QP problems in which the

diagonal elements of positive definite matrix are positive and hence time and labor may be saved.
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Abstract

In this paper an algorithm is given to solve a multi-level programming problem using a linear preemptive
goal programming model. A goal programming problem is formulated which is equivalent to given multi-level
programming problem.
Keywords: Multi-Level Programming, Goal Programming,

1. Introduction

The general multi level programming problem has been an area of active research for many years and
there have been a number of successful practical applications of the problem in areas like government,
autonomous institutions, agriculture, military, maintenance, management, networks, schools, hospitals, banks etc.
A multi-level programming problem (MLLP) is characterized by presence of multiple linear objective functions
subject to the usual linear constraints. One of the important characteristics of multi-level programming problem is
that a planner at a certain level of hierarchy may have their objective function and decision space is determined
partially by other levels. As a class of MLPP, most of the developments focus on bi-level linear programming
[2, 3,9, 11]. The basic concept of the MLPP technique is that the first level decision maker (DM) sets his goal
and then asks each subordinate level of the organization for their optimal solution. The lower level decision
makers are then submitted and modify first DM in consideration of the over all benefit for the organization, the
process continues until a compromise solution is reached,
General linear multi-level programming problem in which we have leader problem with n follower problems is
defined as;
MLPP ' t

Max F(x;,x,,...,%,) = a,x, +apx, - +a,x,
X

Max F(x,,%,,...,%,) = @y X, + apx, ++++a,, x,
X5 .
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ey

R

Max F(x,,%,,...,X,) =@, % +a,,X, +--+a,x
xl‘

Subject to Cox +0.x Foe Cx Sr
By Lpueis X, 20
.ﬂ n ¥ .l .
)58y 50es s ¥, € RY, 05,0555..,0,5, X, € R™,...0,,,8,5,5..,8,,, X, € R and C,,C,,...,C, are the matrices

MX A ,MX Hy,...,mXx N, respectively.
Let S ={(x,,%,,...,%,) :C;x, + Cyx, +++++C,x, <7} denote the constraint region of MLPP.  For givenx, . let
S(x,) ={(x: %50 %,) : CX; +Cyxy +++-+C,_x,, < r=C,x,} denote the (n-1)" follower’s solution space.

Let X (Z) denote the set of optimal solutions to the (n-1)" follower’s problem .

The leader’s solution space is defined as
P(x,,xz,...,xn):{(x,,xz,...,x") LX), Xy5..00X,)E S, X, € X(x,,xz,....xn)}

where X (x_-,, ;:;,...,;;) is the set of optimal solution to the first follower’s problem.,
The MLPP can be expressed as

Max{aﬂxl Fy X oo ALK (B Xysines X, )ES, X, eX(x,.)} Vi=],2...nm ‘
X ;

with notions of feasibility and optimality defined as follows:

Definition 1, A point (x,,X,,...,%,) is said to be feasible to the MLPP if (x,,x,....,x,)eP.

. Definition 2, A point (x]' ,_x; i3 ,x;) is said to be an optimal solution of the MLPP if’

n n
Za,,x,. > Za“x, Vi=l2,..,n.

i=1 =]

It is assumed that S and P are bounded and non empty as it generates the existence of optimal solution of
the MLPP. This problem then becomes maximizing the degree of attainment of these goals called goal
programming (GP). GP was introduced by Charnes and Cooper and then developed. [7, 8] The main idea behind
GP is to minimize the distance between the objective function Z and aspiration Icvelz . The aspiration level Z _
is determined by the decision maker or the decision analyst.

Now consider the linear multi-objective model
(MP) MaxZ=Y Ax,
Subjectto Cx < ¢

x20

S




.
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where xe RY,Z = (22 sesi 2 )" is the vector of objectives, 4 isa K x N matrix of objectives and C is M x N

matrix and g € R" . One of the approaches to solve the multi-objective programming is GP approach. This
approach minimizes the distance between the objective function vector Z and an aspiration level vector Z'. The
aspiration level is either determined by the decision maker or is taken as Z* = (z],z;....,2,), where z, is the
optimal value of Z, subje‘ct to the set of constraints in MP.

General preemptive GP model to solve MP is given by

(GP) MinZ={z w, g, (n.,p.), i=l,2,...,n}
kep,
Subject to Cx<gq

Ax+m —p, =Z,
x20
n., p, 20,np, =0, k=1,2,...K.
M, p, are deviational variables and w), are their weights and g, (n,, p,) = p, in case of minimizing z, and

g.(n,p,)=n+p, when z, =z; is required. A4, is the k" row vector of matrix A, 1 is themumber of priority

levels, k € P, means that the k™ goal is in the i priority level.
Since MLPP is NP hard, it is not so easy to solve it. Here an algorithm to solve MLP problem using preemptive
goal programming model is presented. _
2. Formulation of Goal Programming Problem Equivalent to Multi-Level Programming Problem
Phase L. In this phase the MLPP is converted into an equivaient GP problem. We consider the problem P, given
by .

P) M;I:sz(xt,xz,...,x") =a,X, +a,X, + 4 a, X,

A/{ax F(x.%y,..0,X,) = ay X, + a5, X, 4+ + 8.
2

A/{ax F(xl 3 xE perey x.'i') = anlxl + anlx2 +eeet amfxn
ek .

Subjecttd Cx, +C,x, +---+C x, <r

X5 X500, X, 20

Let K" be the maximum value of F corresponding to the points (x, x¥,..x"e S, i=12,..n'.

Therefore
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M _ M 0 MY — 5 O m m
F; R E (xh ,le ’-."xﬂj )'-allxh "aﬂxﬁl "‘""alnxm

[ (M (0 (R (1) (3 (h
F:ﬁ - F; (xll' ’xZi' reees Xy )_ a?ixi-‘ 2Oy Xy, reeesly, Xy,
- M _ m M my _ ay o M i ()
Fn - P:r(xlf "th' serns Xy )_ X 2 a1 %y, seons @ Xy s Vi= 1,2,...."

Calculate  the  value of  lower level objective functions S(%,Xys0e X, ) at  these

. 1y (1 I (1 o) Dy, 1 . g
pomts(xf ]’xé)""’xf’))']"et-ﬂ )= f(xl{:}!‘ng""" ;(u'})s i=l,2,.., n". Arrange j;(l)’ 1:1,2,...,n‘" n
decreasing order.Let

M ) (N M L () ) - o
f(xll s Xy s Xy )2 f(xu ,xn,...,x”z)z """"" > ‘f(x]” ,xzug.“’x"”)
i (13] n (n
i.e., R e il 2 orewer o g

Then the preemptive GP model of MLPP at the point (x,‘”,xﬁ”,...,xf,” ) can be formulated in (P,) given by

() MinP(d] +d))
Min P,(d; +d})

MinB,(d;)
Subjectto x,+d; —d; = f;""

~ + _ (D)

- _ ¢
xn+dn =

Cx +Cyx, +---+Cx, S7
N T L
d;,d; =0; d;.d; =0, g=1L2,uH
The first (n-1) objectives are considered absolute. '

Phase I1. In this phase, on solving problem (P;) the iteration methodology for GP problem [8] can be used. The

solution of problem (P,) is either feasible or infeasible, where feasible means objective function values of goals at
priority P, and P are zero.

In case (i) d; =0, d; =0, by the choice of /" as £ and hence (x{,, X3),..., %y, ) is the solution of MLPP.
In case (ii) d’, >0 and d, 20, d, >0.

If d” >0, then (x7, x1),...,x) is a solution of MLPP.

>*nn
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Ifd, =0 andd, =0, even then (‘cl(f,), x;:,), XY is a solution of MLPP.

If d; >0, then (x,‘,‘,', x;;’, “)) is not a solution of ML.PP,

Then we repeat the process of phase Il with the next alternate solution (x”, x!"', . x"} taking F'" = F and
f:” ﬂf,m where s =(n~1) continuing this process till either some Bl x\) Vi=1,2,....n turns out
to be the solution of MLPP or none of (x{", x{,....x) is the solution of MLPP. In the former case we stop as

the solution is attained and in later case find the next best solution of problem P,. Let the next best value of F as

F® at the points (x2, x2,...x™) e S Vi=1,2...,n” ie. F(wc]r 2P, xP)=F Yi=12,.

}i.f

Find the value of f at these points and arrange them in a decreasing order.
2) @2 2 2 . 2 2 :
Let (4" 202 = £ Vi=1,2,..,n and fO2 P32 f®,

Repeat phase I with the point (x”, x,..,.x®), i=1,2,....n.

A

Continue this procedure till some extreme points turn out to be the solution of the given multi-level programming

problem. Since, the set of extreme points is finite, the process converges in a finite steps.

3. Goal Programming Algorithm

Step 1:  Solve the linear programming problem P, with the leader’s objective function. Let (x(s x, . x"y,

HJ

Vi=l, 2,. 1 be its optimal solutions. Let F(x{,’, x{),...,x')=F" and go step 2.

2no nn

Step 2: Find the value of the lower level objective function f at these points and arrange than in descending

order. Let f, be the maximum value of f at the point(x", x{" .. x") . Formulate corresponding

Hﬂ'

goal programming problem P, and solve it.
Step3: If (x\V, x;:’, x{) is the feasible solution of goal programming problem P; then (x!, x{, .. xV) is

the solution of MLPP otherwise go to next step.

Step 4:  Since the problem is infeasible there are arises two cases.

() d;>0,d, =0and d; 20 andthen (x”, x{,...,x"') will be $olution of MLPP.

(ii) Ifd,,>0 and d; >0 then go to next step.

M M xI

Step 5:  Starting with the point (x’, x5,/ ,... M x5O

»X,,) 8o to step 3. If (x;,), x3,),....x.))) is not the solution of

MLPP, repeat the step with other values of (x, x",.... x). If none of these give the solutions of
pCﬂ P In 2n g

MLPP then go to step 6.
Step 6:  Find the next best solution of problem PI and process further.

Hence we find the best solution for a multi-level programming problem from this algorithm.
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4. Conclusion
We have obtained feasible solution of multi-level programming problem which satisfies the constraints.
The GP approach for this MLP problem is simple and practical which gives the best solution of MLPP.
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