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Abstract

We review the three standard definitions of mathematics of the 20"
century, along with their warring philosophies. The limitations of these standard
philosophies are explained. To overcome these limitations, Davis and Hersh
(1981) have designed a new philosophy called “Mathematical Humanism".
This philosophy gives the latest definition of mathematics—the subject matter
of this paper. Later, Hersh (1997, 2001) has made substantial study of the
philosophy and the definition.

During the World Mathematics Year 2000 celebrations, the Fields
Medalist David Mumford, in his address on Mathematics towards the Third
Millennium announced: I love this definition of Hersh [Arnold et al.2000].
We call it as the 21 century definition of mathematics and give an updated

exposition to benefit the researchers.

1. Introduction

Pythogoras (580-500 B.C.) invented the words mathematics (in Latin, it means that which can be learnt)
and philosophy (philo: love, and Sophia: knowledge). In the 20" century, three philosophies of mathematics have
been identified to correspond to three definitions (vide Section 2). The details of limitations of these philosophies —
popularly referred as the standard philosophies— are cited in Sec.2. To overcome the difficulties Davis and Hersh

(1981) exploited the Philosopher Karl Popper’s classification of distinct realities.
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Three major levels of distinct realities (Popper 1971) and the world of mathematics:

World 1: (Physical world) this is the world of mountains and valleys, of mass and energy, of bone and blood,
and of stars and galaxies.

World 2: (Individual World) this is the world of emotions, thoughts, and awareness.

World 3: (Social world) this is the world of languages, traditions, social institutions. Mathematics belongs to
World 3, an essential part of our non-material culture!

Mathematical Universe Hypothesis (MUH): In 2007, cosmologist Max Tegmark proposed MUH, which
states that “our physical reality is a mathematical structure, and that our universe is not just described by mathematics—
it is just mathematics.” Hence Popper’s and Tegmark’s work shows how huge is the spell of mathematics. In the next

section we will show how this huge spell will be restricted by the 20" century’s narrow philosophies.
2. The Three Standard Philosophies and Definitions of Mathematics in the 20" Century

(A1) The Philosophy of Mathematical Platonism (Realism) states that the whole of mathematics exists
externally and independently of human mind. Mathematicians discover what is already there in the universe. Most
(65%) of the researchers are Platonists— applied mathematicians!

(A2) The definition of mathematics according to Platonism: Mathematics is the exploration of the pre-
existing world. For example (i) The abstract structure ‘smallest non-Abelian group’ is discovered in the six symmetries
of ammonia molecule (ii) straight line is discovered in the path of a light ray, (iii) Ellipse is discovered in the planetary
orbit around the sun (iv) Fibonacci sequence is discovered in Phyllotaxis (Leaf arrangement in trees) via Schipp’s
formula, (v) Geometric progression is found in stimuli and discrimination of (rose) smell (vi) Matrix is found in the
arrangement of influence of a politician [Radhakrishna 2013].

(B1) The Formalist Philosophy of Mathematics states that mathematics is the creation of the human mind
and so it is invented. This is against the spirit of Platonism.

(B2) The Formalist Definition of Mathematics: Mathematics is the science of rigorous proof. Any logical
proof must have a starting point. So one starts with undefined terms, and some unproved statements about these
terms called axioms. Results obtained by valid logical deductions from these axioms are , called theorems i.e.,
formulas. In short, mathematics is the science of formal deductions from axioms to theorems. The theorems are
neither true, nor false, as logic started with undefined terms. Venn diagrams, geometrical figures are not mathematical.
There is no meaning and no intuition in mathematics. Logic rules the formalist mathematics.

(C1) The Philosophy of Constructivism or Intuitionism: The natural numbers
1,2,3,...m,...t0 o

are given to us by intuition, which is the starting point for all mathematics. Only those mathematical objects are
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meaningful and exist, which can be constructed from the natural numbers. This is the philosophy of computational
mathematics, and computer science. The number of keys on a key board of a computer is finite and so the emphasis
on finiteness.

(C2) The Constructivist Definition of Mathematics: Starting from the natural numbers, all that can be constructed
in a finite number of steps, is (genuine) mathematics.

Spurious mathematics: Real numbers cannot be constructed in a finite number of steps; for example the real

number ‘e’, uses ll’lfiﬂlty “ooin lts COl'lStI'UCtiOﬂ
e—lim (1"‘]/”)
n—yee

Thus constructivists avoid real numbers, consequently real analysis, complex and functional analysis.

Also they do not allow indirect proofs of theorems, contrary to F ormalists and Platonists.

3. The 21* Century Philosophy and Definition of Mathematics

The avoidance of real numbers by Constructivists, the lack of meaning to symbols by Formalists and the
belief in the infallibility of mathematics by Platonists, have prompted Davis and Hersh to find a new philosophy of
mathematics, that could overcome the limitations of the standard philosophies. They invented MATHEMATICAL
HUMANISM as the new philosophy and the corresponding new definition of mathematics.

The 21% Century Philosophy of Mathematical Humanism: Mathematics is a purposeful activity connected to
other fields of human activity. Mathematics is meaningful, fallible and rectifiable.

The 21* Century (Humanist) Definition of Mathematics:

Mathematics is the study of mental objects with reproducible properties. +#3:1)

In algebra the mental objects are the elements of a set and the binary operation. In calculus functions and
their derivatives are the mental objects.

An interesting observation on the 21* Century Definition:

() If we replace ‘mental’ in (3.1) with ‘physical’, we get the definition of SCIENCE.

(2) If we replace ‘reproducible’ in (3.1) by “irreproducible’, we get the definition of ARTS.

Statement (3.1) answers the query “What types of communications are called mathematics?”
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4. Conclusion

Foundations of mathematics are not taught in Indian universities. So research scholars are not exposed to

“philosophy (Ph) of mathematics’. Obviously we produce Ph.D.s without Ph. In fact, philosophy gives direction to

research. This situation can be redeemed with the help of recently published book [Radhakrishna 201 3].

(1]
(2]
131

[4]
(5]
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Abstract
We obtain here certain integral representations for functions related to
Kampe' de Fe'riet function of the fourth order ,which are the sufficiently general
in nature and are capable of yielding a large number of simpler and useful

results merely by specializing the parameters in them.

MSC. Primary 33C20, 33C65
Keywords. Hyper-gcometric serics, Kampe' de Fe'riet function of the fourth order, Eulerian integrals, Beta

functions, Appell functions.

1. Introduction

Many special functions appear as solutions of differential equations or integrals of elementary functions.
Therefore, tables of integrals usually include descriptions of special functions, and tables of special

functions include most important integrals: at least, the integral representation of special functions. Because

Dedicated to Professor M.A.Pathan on his 75th birth anniversary
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symmetries of differential equations are essential to both physics and mathematics, the theory of integral
representations is closely related to the theory of special functions as well as certain topics in mathematical
physics.

In this paper we consider Eulerian integral formulas of first kind and obtained a number of integral
representations for functions related to Kampe' de Fe'riet function of the fourth order. For evaluations and
extensions of results on Euler type integrals, we refer a paper [11]. A great interest in the theory of hypergeometric
functions (that is, hyper-geometric functions of one , two and several variables) is motivated essentially by the fact
that the solutions of many applied problems involving (for example) partial differential equations are obtainable
with the help of such hypergeometric functions (see, for details, [10, p. 47-48]). Also, in this regard, it is noticed
that the general sextic equation can be solved in terms of Kampe' de Fe'riet function (see [2] and [8]). Although
the integrals involving and representing hypergeometric functions have numerous applications in pure and applied
mathematics (see, for example, [4]-[7]), not all such integrals have been collected in tables or are readily available
in the mathematical literature. It is noted that a few integrals involving functions related to Kampe' de Fe'riet

function of two variables annexed those mathematical literature.

The Kampe' de Fe'riets hyper-geometric series of two variables F/#* (see [9] and [10]) is defined as

follows:

= &= — R ..(1.1)

where for convergence

prg<l+m+l,p+k<l+n+l, |x|<o, |y| <o

or

prg<l+m+1l, p+k<l+n+l, |x|, <o, |y |< o,and . (L2)

-1 1 i a
|x " +|y |~ <],if p>I; max{ |x ||y }<L if p <1

P i
where [ (a, )m =(a,),,,(@),,,-A@,),.,, with similar interpretations for H (2, )m ,»etceteraand (a)
J= =

M’(G)oz]

denotes the Pochhammer symbol given by (a) = @
a
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and I' being the well-known Gamma function. The Kampé de Fériet's function (1.1) being the most general
hypergeometric function of two variables, this is because the Kampé de Fériet function reduces to the product of
two generalized hypergeometric functions of one variable by choosing parameters suitably. It is often convenient
to identify the various functions with integral representations. These integrals provide recursion formulas,
asymptotic forms and analytic continuations of the special functions. In this paper we establish 17 Euler integral

representations for Kampé de Fériet's functions of double series of the fourth order.

2. Integral Representations

First, we recall the definition of Euler integral of the first kind ( the Beta function) [3]:

P b-1 '@k
B(a,b):a[t" (1-1) dr:%, Re(a)>0, Re(b)>0. 2.1

By making a simple application of (2.1), we begin by presenting each of the following integral
representations (2.2)+2.19).

Theorem. Each of the following integral representations for Kampe' de Fe'riet functions holds true.

4, @b e, d; ¢, dy;
Ff{f[ e x,y}

e /1,858
I ! et gepeg| DGy Bty
:r(a)r((eg_a)J §(1=8)" fan [_; g_; g_xéiyé}d&, . (22)
Re(e)>Re(a) >0,

Fz;z,zl: a,b; ¢,d; cl’dl;x y:|
22 le+e; f.8: 0085
F(e+el)l £ a-1 222
=———-=| & (1-&)" F;;
Tre)d & (-8 A

r(e) —e. f.8:0./.85

Re(e) > 0,Re(e,)>0.

[a,b; ed;  eudy ]
x,y |dE, : O (0% )
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32 a,b;e,d;c,,d;;
B a
= leten S g &

e+e‘ i a2 a,b;c,d;c,,d; ]
= 7 ! F" xc, y(1— dE€, oz (24)
T J g [ i gia g oY (1) |dE
Re(e)>0,Re(e ) >0,
a, by de.d;
R, plmediadiy,)
[e+el,f+f' 2 2 g
r(e+el f+f e-1 fl fi-l
1—
I"(e) ”é 1 - .. (2.5)
b cd o)
F222 a, 1* I’ , 1_ :|d d ,
033|: e, g0 Lo xén ( 6)( 77) &dn
Re(e)>0,Re(e,)>0,Re(f)>0,Re( ) >0,
F’ [abcdc,,di,x y]
H ef: & &
F( l | efal b c, dC], 12
a ...(26
T'(a)T(e- alé '“[f; g g.,gz’{lEj Ge
Re(e)>Re(a)>0,
2M[abc:'a'c[,d], }
21 e.f: & g >V
I(e) r(f)
“T(a)T(e—a)T(B)T(f-b) (27
x[[ et (1=&) " (1-n)"" F(c,ds gsx8n) F (c,.d;: 8, yén) dédn.
Re(e) >Re(a),Re(f)>Re(d),
g a,b;c,d;c,,d,;x
B lef @ gy
c+c, : | c,—l o a,b,c+c;d;d; | ]d
7 (- ves (2B)
Tleralf e ogrt iy g -0 e

Re(c)>0,Re(c,)>0,
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222 | Bbie.di6,d;;
E:i.i‘u . . .x’y
esf9 g’ gl’

_ T(c+e) T d+d J'J‘ gt ( 5)61-1(1_n)d1-1

T'(c)T(q) r(d) . (2.9)
a,b,c+c,d+d ;—; —:
Hﬁ[ ‘e;gg;&Jme—mem
sJ 285281
Re(c)>0,Re(c,)>0,Re(d) >0,Re(d,) >0,
222 [a,b; c’dQCudﬁx y:|
olefs & &
r(gl) ‘ -1 &—d-1 2,2|[a,b;c,d;c‘|; :I
= H(1-g)F T pER x, yE |dE, .. (2.10)
I“(dl)l"(g.—dl)!é =3 0 g, 1y gy Y0 |4
Re(g,)>Re(d,)>0,
20| @by Csdie,di; }
211 X,
i [e,f; e g
__ T(g) I'(g)
I'(d)T(g-d)T(4,)T(g,-4d,) 211
L it aai | BB B
I &g e 2] 2 gy atan
0o e,f, p -
Re(g)>Re(d)>0,Re(g,)>Re(d,)>0,
F;,l[abc,dd,,xy}
3,0,0 fg, : : 3
_ r(e) F(f) [ a=1,.8-1
“T(a)T(e-a) T(B)T(f - b;[;[é " - 212)

X(1=8)"" (1-m)""" Fi(exd gz x6m. yEm) e,
Re(e) > Re(a)> 0, Re(f) > Re(b) >0,
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abyesdids
F[ ' x,y]

e, f,8— =
= If(_g%i E(1-8)"" | E(ab,c.d +dge, f,g;xE+ y(1-€))dE,
Re(d)>0,Re(d,)>0,
Ef‘;"z"’[a’b’c’d; - ‘;x,y}
e f.g: .8
e g M S e
Re(e) > Re(a)>0,

F;,u_u[avbvcsd; - '_;x y]
22| etesfigifign
F(e+el)' L o 4°0|:a,b,c,d; - - }
- “(1-8" B X 3(1-8)|d&,
F(e)r‘(el)':l)lé ( é) e _;estg;etf;sgl;é ( )
R(e)>0,R(e,)>0,

. a,b,C,d;—‘; —
ﬂf{ﬂ"’{ x,y}

e.f;8:8:
___IL‘ a-1 (1 _ g\ema=l 30,0 b,c,d;_; _;x :|
_I“(a)l"(g_a)_([é (1 é) F) [ £ g8 &, ¥E |dE,
Re(e) > Re(a) > 0_’
F4:0,0 {a’ bsc.-d; = . yj|
211 o s 3
__ Te) T(f) b
_F(a)r(e—a)r(b)r(f_b),{[_‘[g n

x(1=€) " (1-n)""" F, (c.d; g, &;xEn, y&n) d&dn,
Re(e) > Re(a)>0,Re( f)>Re(b) >0,

.. (2.13)

. (2.14)

. (2.15)

... (2.16)

o (2.17)
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a.bedi—; —
F;‘f.-.“;"[ - y]
e+e,,f g,gl,

1
e+e J’ 5“ ¢|—1F4ooli
0

a,b,c,d; -
1-&) |d ...(2.18
f eag:e,:gl’xé y( g)} 5 ( )

Re(e)>0,Re(e,)>0,

e+e,f+1:8:85
_ T(ete) (f+f)j
l_'(e)l"(e,)r(L ) (f)n

J¢
(-9 -0 R 20O

2 a,b,c,d; - -
F[ "

...(2.19)

_;xén,y(l—i)(l-n)}dédn,

— 6, 836,85
Re(e)>0,Re(e,)>0,Re(f)>0,Re(f)>0,

0:2,2

Proof. It is noted that each of the integral representations (2.2) to (2.19) can be proved directly by
expressing the series definition of the involved special function in each integrand and changing the order of the

integral sign and the summation, and finally using the Beta function B (a,b) defined by (2.1).

We conclude this paper by remarking that by assigning suitable special values to the coefficients in (2.2) to
(2.19), we can derive integral representations for Appell functions of two variables F,F,,F, and F, (see [1]
and [10]). The details involved in these derivations are fairly straightforward and are being left as an exercise for

the interested reader. Also, the Euler integral of the first kind (2.1) can be applied to in order to establish other

integral representations for more functions related to Kampe' de Fe'riet function of the fourth order.
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(2]

(3]

(4]

(3]

[6]

(7]

(8]

[9]
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Abstract

Real natural systems evolving around us are nonlinear in nature and
their dynamics are not as simple as in cases of linear systems. Also, the
Euclidean Geometry invented by Euclid during 300 years B C is not enough to
explain the shape and dimension of any real systems. Recent emergence of
Fractal Geometry, suggested by Mandelbrot, is capable fo describe a lot
regarding the shape and dimension of real systems. Because of nonlinearity, real
systems show complexities in behavior while evolving and chaos is one such
complexity. Principles of nonlinear dynamics can only help to understand

complex and chaotic behaviors observed in any nonlinear system.

In this paper evolutionary phenomena of someone dimensional real
systems have been discussed and complexities involved are discussed fo
understand the property nonlinearity within the system. Numerical simulations
have been performed to explain complexities and chaotic motion in these
systems. Specific models proposed are :simple models of spreading measles,

cavity evolution of an external laser, blood cell evolution model of biology and
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gross national product (GNP) model of economics. Measures of Lyapunov
exponents (LCEs) and topological entropies are obtained as a measure of
complexity and, are demonstrated through graphics and tables and interpreted

completely. Results obtained are explained with complete interpretation.
Keywords: Chaos, Lyapunov Exponent, Dynamic Lyapunov Indicator, Topological Entropy
AMS Subject classification: 92D40

1. Introduction

Almost all real systems that we observe around us are of evolutionary behavior and if we can write an
appropriate mathematical model (Equation) for any such a system, we can describe its past and future behavior.
As such systems are mostly nonlinear; one has to follow the Principles of Non-Linear Dynamics. For nonlinear
system, we do not have any principle like principle of superposition that is true for linear systems. Nonlinearity in
real system is a property of the system described by the parameters involved into it. As these parameters changes

in values, one observes phenomena like bifurcation and chaos during evolution.

Chaos and complexities in real natural nonlinear systems are now very common phenomena. A system is
chaotic if it shows unpredictability during evolution and becomes very sensitive to initial conditions. Two orbits
originating nearby show divergence property after long term evolution. Chaos is measured by Lyapunov
exponents denoted by, A; actually this A measures the evolutionary divergence between two orbits started with
very small difference in initial conditions, (cf. [1] = [5]). A simple system evolves in simple ways but a complex
or complicated system evolve in complicated ways and between simplicity and complexity there cannot be a

common ground [6]. Chaos and irregular phenomena may not require very complicated equations.

Complexity in a dynamical system can be viewed as its systematic nonlinear properties. It is the order that
results from the interaction among multiple agents within the system. A system is complex means its evolutionary
behavior do not show regularity but chaotic or some other kind of irregularity [7 — 10]. Complexity and chaos
observed in a system can well be understood by measuring elements like Lyapunov exponents (LCEs) and
topological entropies etc. Topological entropy, a non-negative number, provides a perfect way to measure
complexity of a dynamical system. For a system, more topological entropy means the system is more complex.

Actually, it measures the exponential growth rate of the number of distinguishable orbits as time advances [11 -
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15]. Though, positivity measure of Lyapunov exponents (LCEs) signifies presence of chaos, LCEs and topological

entropies together provide measure of complexities in the system.

A complex system can be viewed as that of composed of many components which may interact with each
other. A complex system exhibits some (and possibly all) of the following characteristics: (i) some degree of
spontaneous order, (ii) robustness of the order and (iii) numerosity. Topological entropy provides the measure of
complexity; more topological entropy implies the system is more complex. Actually, a topological entropy
measures the exponential growth rate of the number of distinguishable orbits as time advances in the system.
However positivity of its value does not justify the system be chaotic [16, 17]. Correlation Dimension provides the
dimensionality of the system. It is a kind of fractal dimension and its numerical value is always non-integer [18 —

20].

The objective of the present article is to study complexity in one dimensional discrete nonlinear
dynamical system and to obtain certain measure of such complexity like Lyapunov exponents and topological

entropies.

2. Tools to Measure Complexity

(a) Lyapunov Exponents:

The Lyapunov exponent, (or Lyapunov characteristic exponent LCE), provides an average measure of
exponential divergence of two orbits initiated with infinitesimal separation. The +velargest eigenvalue of a
complex dynamical system is an indicator of chaos, [10].For a smooth map f on R" and x, an initial point the

Lyapunov exponent can be calculated as follows:

Two trajectories in phase space with initial separation 8x, diverge (provided that the divergence can be

treated within the linearized approximation) when
|6x(t)|a~.e“|8x(0)| ; (2.1)

where A > 0 is the Lyapunov exponent.

The system described by the map f be regular as long as A < 0 and chaotic when A> 0.
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(b) Topological Entropies:

Consider a finite partition of a state space X denoted by P = { A,, A;, As.. ..., Ay}. Then a measure pL on
X with total measure p(X) = 1 defines the probability of a given reading as

pi=u(Ai)si=1523"sN'

Then the entropy of the partition be given by
N

H(p) =-)_p; logp, - (22)
i=0

3. Dynamic Models

(a) Logistic Model as Epidemic Spreading:

Logistic model, often used for spread of epidemic infections such as flue, measles etc., represented by

map

Xn+1 = Xp T (1 - X)) X, ...(3.1)

where the X; represents the number of infectious individuals after n time steps (e.g. days), r is the rate of

spreading of the disease. The model (3.1) is derived from the actual population model, (cf.[22, 23]).

The system (1) has fixed points as x,* =0 and x,* = 1. Using stability analysis one obtains that the fixed
point x,*= 0 is stable when — 2 <r < 1 and x,* = 1 is stable when 0 <r < 2.Thus steady state of period one exists
forr <2 and at r = 2, system bifurcates and one observes period doubling bifurcations leading to chaos as r
further increases as shown in bifurcation diagram, Fig. 1 (left figure). The right figure shows an iterative approach

of steady state.
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Fig. 1: Bifurcation diagram of system (3.1) for 1.5 =sr < 3.
The right hand figure shows an iterative approach of steady state.
Calculations have been performed to obtain the Lyapunov exponents, LCEs, and topological entropies and
represented graphically, Fig. 2. LCEs are obtained for 1.5 = r < 3, Fig. 2 (a) and topological entropies for 2.1 < r
< 3, Fig. 2 (b).Looking carefully these two figures one easily gets impression that complexity may happen where

the system does not show chaos.

L i - : (b)
e 5 N sy — :
¢ 1 10
-] o YY 1 E f<E 1
r ] o L 1 ]
~ : 5 o6 b
=2 E = 1 x
: M 0.4 f | :
-3F 1 ]
] 02 r ¥ ' T 4
-4l N . . (1Y) SR E— . 3
20 22 24 2.6 28 30 22 24 2.6 28 30
1 4 ' r

Fig. 2: Plot (a) is represents Lyapunov exponents for 1.5=<r=<3and
plot (b) represents topological entropy for2.1 =r=<3.

(b) Cavity Evolution of an External Laser:
A highly simplified type discrete model for laser system, arising from Laser Physics [24-26], was
described in some articles. The model describes evolution of certain Fabry-Perot cavity containing asaturable
absorber and driven by an external laser and represented by

AXx,

2 s
n

X, =Q- VeR, neN «(3.2)

1+x

Where Q is the normalized input field and A is a parameter depends on the specifics of the parameters and is

always positive. As the model describes bistability character due to variation of values of A, it may be referred as
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bistability parameter also. The parameter Q, also describe similar criteria when varied which can be seen during
numerical simulation. The variable x, stands for the normalized field in the cavity at time t. Mathematicél
discussions provide in details regarding stability and bistability or multistability of the model in various ranges of
parameter[25]. Recently, multistabilityin this model shows some interesting results in the processes of chaotic

evolution [26].

The objective of study of this model is to see dynamical aspects of evolution of this map in parameter
space (A, Q). Numerical investigations are performed to obtain bifurcation diagrams by varying A as well as Q.
For chaotic case, for different range of A, plots of Lyapunov exponents and corresponding topological entropy
have been obtained. The system evolve chaotically for higher values of A. Plots of time series and cobweb

diagram are shown in Fig.3 for Q =2.76 and A = 5.122.

Time Series
X 20

155 15F
10}

1o}
osh

o.5) ¥ \

i P N L i “ n LA Sl
10 20 30 40 50 ) 0.5 1.0 1.5

Fig.3: Time series and cobweb plots for chaotic map (1). Parameters are Q = 2.76 and A = 5.122.

We have drawn bifurcation diagrams for four ranges of values of A fixing Q = 2.76 as shown in Fig. 4.

These gives clear picture of bistability, multistability, fold bifurcation together with chaos.

{sAs‘i.O

095Q=<33

Fig. 4: Two bifurcation diagrams of laser map (3.2) by varying A and Q.
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In the left figure Q is fixed,(Q = 2.76) and on the right figure A is fixed, (A =5.4).

Plots of Lyapunov exponents for cases corresponding to Fig.4, first keeping Q fixed, (Q = 2.76), are given
in Fig.5 below. These plots clearly describe that chaos appears for parameter range 5.1< A < 5.4 and again when

15.7< A £18. The characteristic figure appear when A >> 15 signifies the phenomena of multistability.

Also, the plots of Lyapunov exponents corresponding to Fig.4, when we made Q to vary and A fixed,
(A =5.4), is shown below in Fig. 5(lower panel). Appearing of chaotic motion observed to be interesting. For both
the cases, varying A as well as varying Q, one observes topological entropy appear to be positive. For example in
the upper left plot near the region of A = 4.5, one finds Lyapunov exponent negative, (i.e. A < 0), but on the right
plot topological entropy is significantly positive. Thus, here the system, though regular, is highly complex. Similar
situations appear in various regions in both, upper row plots and lower row plots, of Fig. 5. By varying both, A

and Q, a 3 D plot of topological entropy is shown in Fig. 6.
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o
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10 15 20 25
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Fig. 5: Plots of LCEs (A) and topological entropy. For upper row plots Q = 2.76 and for lower row plots A =5.4.



Fig. 6: Plots of topological entropies, (upper row), for two different rage of values of A keeping Q =2.76
fixed.The lower one is a 3-D entropy plot varying Aand Q; 4 = A=<55& 1 =Q =3.5.

(¢) Blood Cell Model:
A simple blood cell model , [28-30], can be described by the following one dimensional discrete equation
C,,, =(1-a)C, +b C: ™ ..(3.3)
Where C, denotes the red cell count per unit volume in the n“time interval, a is the rate of cell destroyed and
parameters b, r, s are related with produced cell p, per unit time given by
p, =bC; e*“ with 0<a<1landr,s>0.

Interesting bifurcation diagrams of blood cell model have been obtained and are shown in Fig.7.The left figure
showing criteria of bistability and multistability. The right figure clearly showing period adding and chaos adding

nature of bifurcation. This bifurcation figure provides the idea that this blood cell model is highly complex.

0.5

00k
0.0

20

Fig.7 : Bifurcations of blood cell model by varying a and s forr=8,b=1.1 x 10¢ and (i) in left figure s = 16,
(ii) in right figure a = 0.5. Here x; stands for C; .



L.M. Saha and Til Prasad Sarma / Applications of Mathematics in Real Life .......... [ 21

Further numerical studies havebeen carried out to calculate LCEs and topological entropies for above
blood cell model and shown in Fig. 8. Left figure is for LCEs and that on the right side is for topological

entropies. Analyzing these two graphics, one definitely gets ideas that complexity and chaos are two different

properties.
(b)
20
2
1.5
= |
£ 10
=
=
0.5
ook
02 0.4 0.6 0.8 1.0 0.0 02
3 a

Fig.8: Left figure (a) is for LCEs and the right one is for topological entropies.
Parameter values arer=6,s=16,b=1.1x10°and 0 <a < 1.

LCEs plot and topological entropy plot in Fig. 8, shows the complexity nature of blood cell model. We

see positive topological entropy in many regions where LCEs are negative.

(d) Gross National Product (GNP) Model:

Gross national product (GNP) of a country measures the economic activity of the country. It is based on

the labour and production output within the country. For GNP, we have considered the following model,[31],

P m—
Xop = B, w-%,) ..(3.4)
(142)

Here x, is the capital-labor ratio at time n and per capita production function f is defined as

B BxB(m—-x)
T

where o is the savings ratio, A is the natural rate of population growth and parameters m, vy, § all are

positive constant ( > 0). This model is thought as a highly simplified model for GNP of a country.
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Foroc=05=03,9=0521=02,m=1and05=sB=<35,2a bifurcation diagram diagram has been

obtained, Fig. . Also, LCEs and topological entropies are calculated and shown in Fig. 9

345B<dl ; . : ! 3 e — 20

on H i i i . : ra
2 y T T T 35 38 37 3% 39 40 4l 34 35 38 37 38 38 40 4l

Fig.9: From the left; plots of bifurcation diagram, L.CEs and topological entropies for o= 0.5, =03, y = 0.5, A=
02, m=1and3.4<B=<4.l.

In this case of GNP model, after observing figures shown in Fig.9, we see high positive value of

topological entropy where the system is not chaotic i. e. regulsar.
4. Conclusion

The results obtained in this study show clearly that a complex system which is composed of many
components interacting with each other and exhibits properties like spontaneous order, robustness of order and
numerosity etc. Topological entropy, which provides the measure of complexity and be assumed different to
chaos. A system may be regular but may exhibit complexity. Similarly, a chaotic system may not be complex.
But, dealing with natural nonlinear real systems, for most of the systems one encounter complexity as well as
chaos at different set of values of parameters of the system. To observe chaos, Lyapunov exponents are precise

tools and for complexity it is the topological entropy.

The present study is based on feu one dimensional discrete nonlinear systems. However, similar results

regarding chaos and complexity may also be obtained for higher dimensional systems, e.g. [32].
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Abstract

The aim of the present paper is to establish the results of Dirichlet
average of generalized K-Wright type function, using fractional derivative. In
this paper the solution is obtained in compact form of double Dirichlet average
of generalized K-Wright type function. Several special cases have also been

obtained.
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1. Introduction
The Dirichlet average of functions is introduced by Carlson [1-5], which represents certain type of integral
average with respect to Dirichlet measure. Deora and Banerji [6] have found the double Dirichlet average of e*
by using fractional derivatives. The various types of Dirichlet average has been given by Carlson [8] Gupta and
Agarwal [9] found the double Dirichlet average of functions by using fractional derivative. Recently Ram et al.
[11, 12] also found the Dirichlet average of generalized k-Mittag-Leffler function and k-series. In this paper, the
Dirichlet average of generalized K-Wright type function has been obtained.
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2. Definitions

Some definitions which are needed in the preparation of this paper:

a. Standard Simplex in R",n>1:

The standard simplex in R",n>1 is defined by Carlson [1, p.62].
E=E = {S(u],uz,....,u") uy 20,.,u, 20,u tu, +...4+u, < 1} (1)
b. Dirichlet Measure:

Let heC* k=2 and let E=E, | be the standard simplex in R*™. The Dirichlet measure @44 is
defined by

d,ub(u):—-—ulbl",...,u,cwib"‘l_l (1— - ....uk_l)b,;1 dtty....d, Q@

c. Dirichlet Average [1, p.75]:
The general Dirichlet average function is defined by Carlson [2] in the form

F(b,2)= [ fuz)d,(w) e

where d /4, is defined by (2) and

k
uz= Zu,.z,. and U, =1—u —...—u,_,.
i=1
d. Double Averages of Functions of One Variable [1,2] :

Let zbe a k x x matrix with complex elements z; , let #=(t,1,,...,%) and V =(V,V,,...,V,) be an

ordered k-tuple and x -tuple of real non-negative weights Z u, = 1 and Zv ;=1 respectively. Now, we

define
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k x
wzv=Y > uz;v,

i=1 j=1

If Z;; is regarded as a point of the complex plane, all these convex combinations are points in the convex

hull of (311 3ees :Ax) denote by H(z).

Let b=(b,.b,,...,b,) be an ordered k-tuple of complex numbers with positive real part Re (b)>0and

similarly for B =(/8,, f,,..., ) then define du, (u) and d 1, (V) ;

Let f be the holomorphic on a domain D in the complex plane, if Re (b) >0, Re( ﬂ) >0and H(z)c D

we define
F(b,z,p)= ij(u.z.v)dyb (u)dp, (v)

Double average for function is defined by Gupta and Agrawal [9].

2 2
where uzv=y Y (uz,v,)= 2 [u,(zv, +2.v,)]

2
=1 j=1 i=1
=[ulZ“Vl + Uz,v, + Uy Zo Wy + uzznvzl

uy=u u,=l-u
T = PEE— 1 2
Let 2,=a,2,=bz,=¢2,=d and {

thus Zi=
c d

Therefore uzy=uva+ub(1-v)+({1A-u)ev+(1-u)d(1-v)

vw=v y=1-v

=uv(a-b-c+d)+u(b-d)+v(c-d)+d ..(4)
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e. Fractional Derivative [7, p.181]:

The theory of fractional derivative with respect to an arbitrary function has been used by Erdélyi et al. [7].
The fractional derivative is obtained by proceeding via fractional integral. The Riemann-Liouville fractional

integral of order & 1s defined by

DfF(:)—

IF(f)(“ 1) ar (5

ua)

where Re(a) <0 and F(x) is the form of X* f(X): f(x) isan analyticat x=0.
f: Generalized K-Wright Type Function:

Let a,B,7eC,keRRe(a)>0,Re(f)>0,Re(¥)>0 and ¢qe(0,)UN then generalized

K-Wright type function is defined by Ram et al. [10] in the form

. 2 (7).
Weitn(2)= Zr (an+ B)(n))

.. (6)

where (7 )nq. x 1s the K -Pochhammer symbol and I x(x ) is the X - Gamma function.

3. Main Result and Proof

Theorem 1: The equivalence relation of double Dirichlet average of Generalized K-Wright type function

W,C a.p (H-Z - V) with the fractional derivative for (k= x=2) is

F'ls + 4,
S(uy, 12,90 p.) = (o p)( ~y) AT D LWl (x)(x- )T (D)

r'(s)

Proof: Let us consider the double average for (k = x = 2) of K-Wright type function ¥, ,(r }i A (u.z.v)

11
S (4, 1329, 0,) = J.J.W,f’;f’ﬂ (u.zv) dm,, (u)dm,, (v)
00
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Ms

—o I (an +";;(nl) _”[u zv]"dm,, (u)dm,, (v)

where Re()=0,Re(x,)=0,Re(p,)>0,Re(p,)>0

r(ﬂl + /uz) =11 =1
Cu)T () © G707

and d’n}u}‘u:(u)=

r(.pl + pz) vprl(l _ V)Pz—l dv
L(p)I(p,)

dm, , (v)=

Using equation (4), (9) and (10) in (8), we have

Ll + ) T+ )
S(Hy, Uy 25 P> P3) = (4 +4,) T(p pz)z o

T ()T (12,) r(pl ' (0,) o T (an+ ) (nl)

x”[uv(a-b-c+d)+u(b—d)+v(c—d)+d]" w1 =u) 2V =) Y dudy
00

To obtain the fractional derivative, we assume a =c =x,bh =d = y then

T+ 4,) T(p+p,) < Z ¥ Vg

Sk 10325 P10 P2) = T S ) T )T () &5 T (an+ﬂ)(n')

1
J[v(x—- y)+ y]n u! (] - u)ﬂz_l pA! (1 -v)pz_1 du dv

0

O Cm—

Now, using the definition of Beta and Gamma function and due to suitable adjustment, we arrive at

S(Ju]sﬂz;Z;plspz)_‘ r(pl+p2)z nqx J.[( - )+.V] vA l(1 V)p" dv

C(p)l(p,) T (om+ﬂ)( iy 2

On putting v(x— y) =1 in above equation, we get

... (8)

G

. (10)

(11)
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. o _I(a +0) < (7):14,: 7 " [_I_ il t i 1
SWho 500 1) = r(g)r(pz)zr (an+ﬁ)(n!)2£[t+y] ) )

T(p+p,) 5 (7 Dngx _ .
r(p.)r(‘:)z)n-gr ant B I ”Zf[(y“)] 7 (x—y 1)

; I'(p, + p:) 1-p—p; i -1 -1
SO, 1,525 pp, Pp) =——L2(x—y) A2 | WA ,(y+ D)7 (x—y—1)"" di
1> M2 1> M2 F(pl)r(P;) i’; a.p

by using the definition of fractional derivative from equation (5), we get

I'(p + P, 2
S(upﬂg,z;p.,mﬁ—(—l—)( —y) AT D LWl (x)(x - )

T'(p)

This completes the proof of Theorem 1.

Corollary 1.1 If we take ¥ =1 in Theorem 1, we get the following form

I'(p, + p, ’ -
S 37,0 0,) = B P (4 YA02 Doy (x) (5 - )R

r'(p)

Corollary 1.2 If we take & =1,¢ =1 in Theorem 1, we get the following form

v r +p2 - =~ " =5 el
é(ﬂp#z;z;pnp:)=£—)(x—y)l APl w) , (x)(x-y)

I'(p)

Corollary 1.3 Further. if we take £ =¢ = ¥ =1 and in Theorem 1, we get the following new result

I'(p +p, , 2
S 1,20, 0,) = (rl( ) )( Y) P DLW, 4 (x) (x-p)H .(12)

KNOWN RESULT: Further, double Dirichlet average of Wright function reduces to single Dirichlet average of
Wright function and suitable adjustment in the parameters in above equation (12) then we get the following

known result earlier obtained by Sharma et al.[13] :
’ ﬂ ﬂ ! -1
(7)) 0 ()5

Theorem 2. The equivalence relation of double Dirichlet average of Generalized K-Wright type function
Wya Y (H z. V)wrth the fractional derivative for (k= x=2) is



Chena Ram Choudhary and Anita / Double Dirichlet Average of Generalized .......... [ 31

(#])M r(p + pZ) I-p ,0., —P3 2 -1
I d D qu X X — 1
(4 + 1), T(p) (x=») Lap(x)(x-»)

S(ﬂl,ﬂz;z;pl,pz)

Proof: Using equation (11)

D+ ) T(p+p) < (y)m?,'f
T()U() T(p) =T (an+p) (n!)z

S(th, 1332, Prs P2) =

x| j [uv(@—b—c+d)+u(b—d)+v(c—d)+d] u"™ Q-uy" v (1-v)* " dudv

0o

Ifweset a=x,b=y,c=d=0,then we have

\ S r(/'ll + /Jﬁ) r(pl + pz) (y)"fl x
S 230 ) = S L e DY
xjj[uv(x—y)+uy]" w7 A=u) v (=) dudv

00

T +1) T(p+ ) Z Jng.x
F()l() T(p) =T, (om+ B)(n!)’

Sy, 132, s Py) =

xj“vx +y(1=v)]" w1 —u)> A (1=v)> dudv
00

Now, by using the definition of Beta and Gamma function, we get

r(ﬂl +/..L2) r(pi +P2) r(-uj +n)r(/-‘2)z (}’)MK

S(ﬂl,)u'z;z;plap;‘)zr(ﬂ])r(#z) T(p) T(+m+n) ST (an+ B)(n!)

xj.[vx +y(1— v)]" vA 7 (1=v)? dy

= (M)" r(pl+p2) nqx 1- A -1 1-v pa-l
(1 + 1), T(p)T(p,) ;;1- (a“ﬁ)( 7 I[vx+y( )] v (1-v)

On putting v(x — ) =1 in above equation, we get

(ﬂ1) F(p1+p2) Z "4’(
(t+ 1), T(P)OT(P,) 520 T (an+ﬁ)(n')

S(ty, 132, P1s P2) =
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XT[Hy]" (xiy]m (1—xiyjp2_l (xiy)dt

Now, using the definition of fractional derivative, we have

(1) F(p1 + pz) ( 1-p-p, P -1
n x_y) 1 2DI_2 Wa.:f’cg x)(x—y 1
(/11 +14,), r(pl) ® ( )( )

A number of several special cases of Theorem-2 can also be obtained but for the sake of brevity they are
not presented here.

S(ﬂl:ﬂz;Z;pl’p2)=
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Abstract

The object of the present paper is to establish two interesting unified
integral formulas involving Multiple (multiindex) Mittag-Leffler function, which
is expressed in terms of Wright hypergeometric function. Some deduction from
these results are also considered as the special cases of our main result.
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1. Introduction

A number of integral formulas involving a variety of special functions have been developed by many authors
(see[2],[3],[4],[5], also see [7] and [10]) motivated by their works, we aim at presenting two unified integral formulas
involving the Multiple (Multiindex) Mittage-Leffler Function, which are expressed in terms of Wright hypergeometric

Function. Also some interesting cases of our main reslults are also considered.
The generalization of the generalized hypergeometric series pFy is due to Fox [1] and Wright ([12], [13],

[14]) who studied the asymptotic expﬁnsion of the generalized Wright hypergeometric function defined by (see[15,
p.21]). '

Dedicated to Prof M.A. Pathan on his 75th Birth Anniversary
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(a‘l!Al)’(G'Z’Az)!""(u‘p’Ap);7 _ i M7, T (o) + 4;k) 2

T z
re (BISBI)!(ﬁQBBZ)!"“(Banq); n=0 H?:IF(BJ +bjk)k'

wox(1.1)

where the coefficients 4j,...., 4, and Bj,....

A special case of (1.1) is

(ant)s(oaut)o(epet)s | TI7 Tley) [ lon)ev(a)s

Y| (B1), (Bys1)... (Bq,l);z T T(B) " L (Br1)se(By);

where , F, is the generalized hypergeometric series defined by (see [9, section 1.5])

Y B B)o - (B E- (Br), - (By), 7 7°

.....

where (1) . is called the pochhammer’s symbol (see [8], [9])

Kiryakova [11] defined the Multiple (multiindex) Mittag-Leffler function as follows :

Let m> 1 be an integer, py,....p,, > 0 and y,,....,n,, bearbitrary real numbers. By means of “Multiindices”

(p;)(n;) we introduce the so-called multiindex (m-ruple, multiple) Mittag-Leffler functions.

k

-
&

l.)w(u,-) ! r(u1+;‘—,)----1“(llm +p¢) .(1.2)

Also, we have the following interesting relation of Multiple (multiindex) Mittag-Leffler function to other

special functions as follows :
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(i) For m =2, if we put 2 =, S =0and p; =1, py =1 in(1,2), we have
P1 P2

Eq(z) =2, m ..(13)

1 1
(ii) For m = 2, if we put pﬁ =aq, p— =0and u, =B, p, =1 in(1.2), we have
1 2

k

Eyp(z)= —
o kgb (B + k) L(1.4)
. 1 1 -z
(iii) Form =2, ifweput — =1, — =1land b, =v+1, Hp =1 and replace z by 2 in (1.2),
P1 P2

we have (see [11])

—z2 2.y
E(1,1),(14v.1) {—4-] = (‘z—] Jy(2) (1.5

where J, (z) is a Bessel function of first kind (see [8], [9])-

e o irweeut = b —=2 and y = R, =3 PER el by =2
(iv) For m = 2, 1f we put oI 0> and My 2 > M2 5 and replace z by 4’

in (1.2), we have (see[11])

2\ 1
B (g o) (T) =t 45 (2) .(16)
where S, , (z) is a Struve function (see [8], [9])
F 2, if Lo Lotaam =2, w =222 andreplace zby -, in(1.2)
= — L - = =y - 5 I —, 11 i)y
(v) For m =2, it we put P Pa and M > 2 2 and replace z by 2

we have (see [11])
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2 I
3+2v,)( z )= g 4H, (z) (17

where H, (z) is a Lommel function (see [8], [9]).

For our present investigation, the following interesting and useful result due to Lavoie and Trottier [6] will be

required :

R(at)>0 and R(B)>0

2. Main Result

We established two generalized integral formulas which are expressed in terms of generalized Wright
hypergeometric functions, by inserting the Multiple (multiindex) Mittag-Leffler function with suitable arguments into
the integrand of the integral.

First Integral

The following integral formula holds true : For ®(a) > 0, % (B) >0,

0= (-3 (123 g [ 1307 s

2a
:-:(-_3:) r(a)2‘|’m+l (Hl’l)’ ----- ,(umSme)’(a+B,]);y (2.1

Second Integral

The following integral formula holds true : For R (o) > 0, R (B) > 0,

i (0 I O A M A B

Pi
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20 (o,1), (B.,1), (L1);
=15 3Wm+1 y
(3) mr (ulf,%) ..... .(um,i),(a+ﬁ,2); -(2:2)
Proof of (2.1) :
In order to derive (2.1), we denote the left-hand side of (2.1) by I, express E | (z) asaseries with the
v Y
Pi

help of (1.2) and then interchange the order of integral sign and summation, which is verified by uniform convergence

of the involved series under the given conditions, thus we get

W AT G

Pi

= i (»)* : )L], 201 (1 = 5)2BH 2 [lg)z‘*-' (1 _;:_JIZ'H#—I

- k k-

Evaluating the above integral with the help of (1.8), we get

_(2Y" rad S T(B+Kk)T(1+k) P 1
1_(3] d )kgﬁ F(u1+p"!)...f(um+'p":)l"(a+[3+k)(y) k!

Finally, summing up the above series with the help of definition (1.1), we arrive at the right hand side of (2.1).
This complete the proof of our first result.

Proof of (2.2) :

Similarly, to derive (2.2), we denote the left-hand side of (2.2) by I’, express E( |
Pi
the help of (1.2) and then interchange the order of integral sign and summation, which is verified by uniform convergence

) (z) asaseries with
My
of the involved series under the given conditions, thus we get

O L L o

Pi

= i ()" J' otk () _ )22 [1 _g)zc‘“ (1 _%)ﬂwk—l

k. k|70
k=0 I‘(pl+pl)....(pm+pm)
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Evaluating the above integral with the help of (1.8), we get

2V & (o+&)T(B+ k)T (1+k) K1
! ‘( ) kgo F(ut+:—l)....l“(pm+a";)l“(a+f3+2k) y) k!

Finally, summing up the above series with the help of definition (1.1), we arrive at the right hand side of (2.2).

This complete the proof of our second result.

3. Special Cases

In this section, we define some special cases of our main results :

1 (1 7 (1= x) P (1 - %TH (1 - %}B—] E, [y[l - %)(1 - x)z}dx

) @]2& F(e) ¥, [(oﬁ)])(g-:)ﬁ 1);)’} G0

where R(a) >0, R(B)>0.

2. f; (1 - )P (1 - ;)m_l (1 - %)ﬁ_l E, [xy(l - ﬂ(l _ x)z}dx

2\ [(en1), (1), (L1);
) (3] 2 [(a,l) ....... (o +B.2); -"} k8 )
where R(a) >0, K(B)>0.

The above results (3.1) and (3.2) can be established with the help of integral (2.1) and (2.2) by taking m =2,

LY = q, A =0, My =1, puy =1 and using equation (1.3).
P1 P2

=(E)2ar(a)m_ Gl WL );y} . (3.3)
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where R(a) >0, R(B)>0

Bt (12 2 {1 2o

200
=[§} 3%[(&’1)’ (B.D). (j’l);y}, ..(3.4)

where R(a) >0, R(B)>0.

The above results (3.3) and (3.4) can be established with the help of integral (2.1) and (2.2) by taking m =2,

1
p_1 =5 g =0 and u; =B, p, =1 and using equation (1.4).
— o )2 B-3-1 ' . 1/2
5 J-o (1 - x) [1—3] [I—ZJ g, 21(y(1——J(1—x) J dx
_ e () (B.1)
=i"(y)?2 (3] T(o) W, [(V+1,1), ..... ’((HB,I);J)} ...(3.5)

R 1 (eu1),  (B.1)s
= | (}’)~(3‘) 2‘{12[(1,+1,1)’(u+ﬂ’2);)’]r ...(3.6)

where % = -1, Cﬁ(a ——‘2') >0, SR( —%) > 0.
The above results (3.5) and (3.6) can be established with the help of integral (2.1) and (2.2) by taking m = 2.

1

]
oy pT =1 and pp=v+l gy =1 and replacing z by %iz, and using equation (1.5) (see [11]).
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7. j(: X0 (1 = x) 2203 (1 : %jm_l (1 = %)B_H Spy [2:(};(1 - %)(1 — x)? )Uz:ldx

2 2

20 B.1)  (L1)
- 4}"“"(%} T(o)2y3 [(3"”,1),(3“'“‘,1),(a+B,1);y}° ..(3.7)

where ;2 = —1, R(a)>0, R(B-p)>1

. J‘(; s (1- x)ZB—Zu—E, (1 B §]2a—1 (] ) %Jﬂ—p—z s [2’_[”(1 ) %J e x)z )1/2}3&

(2 (ew])  (B1)  (L1);
=4y7H (%] 3W3|:(3—v+|.l,l),(3+v+!‘l,])’(a_}_ﬁ,z);yjla ..(3.8)

2 2

21, R(a-p)>1, RB-p)>1.

where ;

The above results (3.7) and (3.8) can be established with the help of integral (2.1) and (2.2) by taking m =2

1 X 2
— =1L —=lan U = 3_‘;“ , My = 3“’% and replacing z by %,using equation (1.6) (see [11]).

P P2

R GG R O B

il 2 ¥ B (L)
=4y ]@J F(a)2W3|:(%,1),(3+—22‘”,1),(u+B,I);yJ’ ...(3.9)

where ;2 = 1, R(a)>0, R(B-pn)>1.



2a .1 B.1 1L,1);
=4_v—"-'(3] 3%[((1) EZV) .1 );y}, .(3.10)

)| (1) 50 w2

where 2 = -1, R(a-v)>1 R(P-p)>1
The above results (3.9) and (3.10) can be established with the help of integral (2.1) and (2.2) by taking
2

=1and = % My = +,2" and replacing z by =2—, and using equation (1.7).

m=2, l: 1,

]
P P2
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Abstract

In this paper, we study Bianchi type-V cosmological model with perfect

fluid and dark energy (phantom and quintessence). To get deterministic solution

of the model we assume that shear ( a’) is proportional to expansion (0) and
potential V" (#) =-;l¢".' where ¢is Higgs field Some physical aspects incliding
n

singularities of the model have also been discussed.

Keywords: Bianchi type V. Perfect fluid. Dark energy

1. Introduction

Recent cosmological observations contradict the matter dominated universe with decelerating expansion
indicating that our universe experiences accelerated expansion. The accelerating expansion of the universe is

driven by mysterious energy with negative pressure known as Dark Energy (DE). The evidence of the existence of
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DE comes from the Supernova observations [1, 2] and other observations such as cosmic microwave background
(CMB) anisotropies measured with WMAP satellite [3] and large scale structure [4]. These observations suggest
that nearly two-third of our universe consists of DE and the remaining consists of relativistic dark matter and
baryons [5]. In spite of all the observational evidences, the nature of DE is still a challenging problem in
theoretical physics. A varicty of possible solutions such as cosmological constant [6], quintessence [7]. phantom
ficld [8]. tachyon field [9]. quintom [10], and the interacting DE models like Chaplygin gas [11], holographic
models [12] and brancworld models [13] etc. have been proposed to interpret accelerating universe. However.
none of these models can be regarded as being entircly convincing so far,

Recently, many authors have studied the Bianchi type 1 model in the presence of anisotropic DE.
Rodrigues [14] constructed a Bianchi type 1 CDM cosmological model whose DE component preserves non-
dynamical character but yields anisotropic vacuum pressure. Koivisto and Mota [15, 16] proposed a different
approach to resolve the CMB anisotropy problem; the earlier isotropy of the universe could be distorted by the
direction dependent acceleration of the later universe. Koivisto and Mota [16] investigated the Bianchi 1
cosmological model containing interacting DE fluid with non-dynamical anisotropic EoS and perfect fluid
component. They suggested that if the EoS is anisotropic, the expansion rate of the universe becomes direction
dependent at late times and cosmological models with anisotropic EoS can explain some of the observed
anomalies in CMB. Mota et al. [17] explored the possibility of using the cosmological observationto probe and
constrain an imperfect DE fluid. They concluded thata perfect fluid representation of DE might ultimately turn out
to be a phenomenological sufficient description of all the observational consequences of DE. However, one
cannot exclude the possibility of imperfectness in DE.Akarsu and Kiline [18, 19] suggested that anisotropic fluid
must not necessarilypromote anisotropy in the expansion whereas such fluid may also actto support isotropic
behavior of the universe. It has been shown [18] thatanisotropic Bianchi I model in the presence of perfect fluid
and minimallyinteracting DE shows isotropic behavior for the earlier times of the universe.

Primordial magnetic fields can have a significant impact on the CMBanisotropy depending on the

direction of field lines [20, 21]. Many peoplehave investigated the influence of magnetic ficld on the dynamics of
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universcby analyzing anisotropic Bianchi models. Milaneschi and Fabbri [22]studied the anisotropy and
polarization properties of CMB radiation in homogeneous Bianchi I cosmological model. Jacobs [23] explored the
effects of a uniform. primordial magnetic field on Bianchi type | cosmological model.He concluded that the
primordial magnetic field produced large expansionanisotropies during the radiation-dominated phase but it had
negligible effectduring the dust-dominated phase. King and Coles [21] discussed thedynamics of magnetized
axisvmmetric Bianchi I universe with vacuum energy.He examined the behavior of scale factors perpendicular
and parallelto the field lines. Roy et al. [24] investigated Bianchi type I cosmologicalmodels containing perfect
fluid and magnetic field directed along x axis. Exactsolutions are obtained using the condition that expansion is
proportionalto shear scalar.

The discovery of the accelerated mode of expansion of the universe stands as a major breakthrough of the
observational cosmology. Survey of cosmological distant type Ia supernovae (SNela; Riess et al 1998: Perlmutter
et al 1999) indicated the presence of a new unaccounted-for Dark energy (DE) that opposes the self-attractions of
matter and causes the expansion of universe to accelerate. This acceleration is realized with negative pressure and
positive energy density that violate the strong energy condition. This violation gives a reverse gravitational effect.
Due to this effect. the universe gets a jerk and the transition from the earlier deceleration phase to the recent
acceleration phase takes place (Caldwell et al. 2006). The cause of this sudden transition and the source of
accelerated expansion are still unknown. The state of the art in cosmology has led to the following present
distribution of the energy densities of the universe: 4% for baryonic matter, 23% for non-baryonic dark matter and
73% so-called DE (Spergel et al. 2007).

Inflationary universes play a significant role in solving number of outstanding problems in cosmology
like homogeneity, the isotropy, the horizons, flatness and primordial magnetic monopole problem in grand unified
ficld theory.

In this paper we have investigated Bianchi type-V dark energy perfect fluid cosmological model

(phantom and quintessence). To get the deterministic solution in terms of cosmic time t, we have assumed that
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shear (o) is proportional to the scalar expansion (8) i.c. o = 0. The potential ¥ (¢) =2 4ris assumed to discuss
n

the physical results where ¢ 1s the Higg’s field. The vacuum energy is assumed as

f; as considered by Chen and

2

Wu[39] to discuss isotropization process where R is scale factor.

2. Metric and Field Equations
We consider Bianchi V metric in the form
ds® =—di* + A'dx’ + B’e™dy* +C*e*dz? 1)
where 4, Band C are functions of ‘t’ alone.
The energy momentum tensor for perfect fluid is taken as
ol =(Por + Py Jhatty + Py 8 ()
where p, - is the matter density and p,, is the pressure.

For commoving observer

3

' =0=u"=u® and u* =1 =

The energy momentum tensor for dark energy is described by scalar field ¢ as
- 1 i
T =(3obt 47 9)Ju + (o8 =7 () e

Where hy =g +u,u, .. (3)
The phantom field (E = —I)may be considered as perfect fluid for comoving observers and the density

and isotropic pressure are given by Tsamparlis and Pariathanasis [38]

Py =(—%¢f +V(¢]J .. (6)

r=(-28-v0) -
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where as for quintessence field (& =1)the density as pressure are

P¢={%¢f +V(¢)J L (®)

1
Pﬁ(;ﬁ-"(sﬁ)] 2 (9)
For phantom field. equation (6) with (7) and for quintessence field equations (8) with (9) leads to
Py — Py =2V (8) six (10

The Einstein’s field equations are given by
1
R,“—ERg,’=—8:rG(£f7;‘ + 47 )+ Agl (1)

The Klein-Gordon equation for dark energy (quintessence and phantom) with potential V'(¢) is given by

A By C.\, ___dv(9)

bu +[ dg

where & =1 ( quintessence) and & = —1(phantom).

For the line element (1) Einstein’s ficld equations reduce to the following system of equations

A, B, AB, o ( 1, )
i B i 1 L M SR o +E— ‘*V +A . (13
Ay C A€, a [ 1 J
MM T I LA ) ()
B, C, BC, o [ | ]

. (. g P +A o
= + 5 + e Py +32¢4 (¢) (15)

AB, B(C, AC, 3a° [ 1 J
4 4 + - =l p.+e—d -V +A (16
AB | BC L aAc A \P¥ 2"5‘ @) (e}
24, B, G _, an
A B C

where the sub-indices 4 denotes ordinary differentiation with respect to t.
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3. Solution of the field equations

To get the deterministic solution of Einstein's field equations (13)~(17) in terms of cosmic time t. we

assume that o « @ . where o is shear and @ the expansion in the model.

This leads to
B=pC" .. (18)
Equation (17) leads to
A* =BC . (19)
Equations (14) and (15) leads to
B C,(A, B
Taela ) 8

Using equations (18) and (19) in equation (20), we get

Cy
C

+%§(2n+l)=0 .. (1)
On solving equation (21) we get

C =20+ 2)(kyt + &, )i (@)
where & and £, are constant of integration
using equation (22) in equations (18) and (19)

B=B(2n+2)" (kt + k, )ina . (23)

and

= n+l 1
A= (2n+2) 2 (kt+k, ) L (29)

Hence the metric (1) takes the form
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. 1
ds* ==di* + f(2n+2)"" (kyt +k, )z dx®

. X .- (29)
7 (2n+2)" (k1 + 4 )onz dy® + (204 2) (kt + &, Vo2 d2’
After suitable transforms it takes the form
"2 ) o B =
ds’ =———+(2n+2)"" T2aX?* + (21 +2)"" T32dY? + (2n+2)" T2 4z* ... (26)
1
4. Some Physical Properties
Scalar expansion () is given as
k
f=-"1 (27
r @7
Components of shear tensor (o-,f) is calculated as
aletl .. (28)
67 '
. Kk(n=-2
2 :I(—). .. (29)
3(2n+2)1
3 rk,
= ... (30
TP, =
0': =0 (31D
and shear (o ) 1s given as
. -2y’ 8
a":l i+ (n J,+ : - k—l, ... (32)
2136 (2n+2)° 9(2n+2) |T*
The scale factor is defined as
R' =A4BC .. (33)

In our model scale factor is given by
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n+l

1 n |2
R=p° {(znﬂuzjrim:] . (34)

Case: |

For phantom field (&= ~])th{: cquation (12) leads to

A B G, _dV(9)
+| — 4+ —t — = i 35
| G r RS }m - 35)
To find the solution. we assume that
A L
vig)="# .. (36)
Following Linde[37]
av(g)
< — v (3T
¢Jd d¢ ( )
Using equations (36) and (37) in equation (35)
k, L
—d. = A" ... (38
(k,t+k1)¢“ # 8
which on integration leads to
¢3-"=’1(2_”)(kr2+2k:+2k) (39)
2%, 1 2 3
where &, 1s constant of integration
when n = 4 equation (39) reduces to
@ =— b ... (40)

A(k,rz + 2k, + 2k3)

Which matches the result with Linde[37]

The matter density (ppf ) and the pressure (pﬂ- ) for the model (26) (E = —l) are given by
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kK (2n+1)(n+3) &} . o’
{0 = 3 5 = 7 22
" 8(n+1)" 7" 167 ﬁ(2n+2)}i'-1 T}g
%
kT _i{ & . 1 .41
2A(k P + 2kt +20,) | Ak + 2k 0 + 2k a T
( ! 2 3] ( ! 3) ﬂ (2”-‘-2)7‘2"'1
n’cf (n: +3n+ l) 3’
Py = " e ‘ *
YT M@ T plamey
A
kT _i{ , i g .- (42)
2A(KEP + 2yt +2k,) 1| Ak +2kr + 2k w T
(4 ot +2%) (& ) B| (2an+2)17
Case: 2
For quintessence (&= 1) the equation (12) leads to
P + ﬁi.q.ﬁ".-g—& ) :_dV_W (42)
AT B ey” de
To find the solution. we assume that
; Aoy
Vig)=""¢ . (@3)
n
Following Linde[37]
dV(g)
Gy = - (44)
bu <<
Using equations (36) and (37) in equation (35). we have
kl
—1 g =-Ag"" .. (45
(k|l+k2)¢.l ¢ (45)

which on integration leads to
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G )[n—-?_ 5
" = (Zk )(k1f'+2k2f+2k3) . (46)

1

where &, 1s constant of integration
when n =4 _ equation (39) reduces to

¢ = i .. (47)

Ak + 2yt +2k,)

Which matches the result with Linde[37]

The matter density ( Py ) and the pressure ( o ) for the model (26) (8 = —1] are given by

i (2n+|)(n+3)_ kf & a’
T 8] T 1617 (o gy Tk
v
KT i k, . 1 = A
- 2 2 a T
2i[k,r' +2k:r+2k3) P i("]’ +2k:"+2k3) ﬁ[(2n+2)7‘3"—‘2}
g (n: +3n+ 1) 3a”
Po = 22 ol W
4(n+1)' 75 pg(an+2)" 77
%
- 4 " l ... (49)

2a(kr + 20 +26) 7| Al + 200 +20) ﬁ[(zm)rﬁr

5. Conclusion

We find that spatial volume increases with time. Hence the model represents inflationary scenario. Since
o . : o : . .
7] # 0, hence anisotropy is maintained throughout. However at n = 0. 2 the model (26)isotropizes along z axis

and vy axis respectively, The model has POINT TYPE singularity at T =0 if n>0. For n<0and n+ -1, the
model (26) has CIGAR TYPE singularity at T = 0. The modecl (26) starts with a big bang at T = 0 and the scalar

expansion (6) decreases with time. The Higg's field (¢) for phantom field is initially large but decreases due to

lapse of time and for quintessence field the Higg's field (¢)also decreases with time. In phantom field (s =-1)as
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well as in quintessence field (£ =1)as 1 —wthen ¢'" ) — Oand forn =4,¢” - 0. The cosmological term (A).

the expansion (6)are initially large but decreases duc to lapse of time.
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Abstract
In this paper we define an extension of the T - Gauss hypergeometric
function ,R,"(z), and investigate its various properties such as integral
representation, derivative formula, Mellin transform and fractional calculus

operators. Some interesting special cases of our main results are also pointed

out. The established results provide extensions of the results given by Parmar

[2].
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Fractional calculus.

1. Introcuction and Preliminaris
In 2001, Virchenko et al. [7] have studicd and investigate the following 7 -Gauss hypergeometric
function for 7 >0, |z| <1;Re(c) > Re(b)>0 as

I'(c) i (a) T(b+1n) z"

r(6)= T(c+rn) n!’

(L1

RS (z) =,R (‘Lb;C; 7 z) =

They also gave the Euler type integral representation ([7], p.91, eq. (6)):
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1
R (a,b;c;1;2) = P 1-0)" (1-2t) "t . (1.2)

. - L

B(b,c-b);
The special case when 7=1 in (1.1) and (1.2) yields the familiar representation of Gauss's

hypergeometric function. Further, Saxena et al. [5] defined generalized hypergeometric function in the following

form

I'(c)r(d) & (A),T(a+mn)T(b+1n) 2~

(
F(a)]'(b)z T(c+n)T(d+n) n!’ o £3)

R (2)=,R (Labcd;t;z)=

where 7 > 0,|z| &1,
Recently. Parmar [2] defined the extended 7 - Gauss hypergeometric function ,R,"(z) as follows: For a,beC

and ce C\Z  is given by

RI(2) =R ((a,p),b;c;z) 11:532 (@ ?)(cl;(f';;rn)in? ; . (1.4)
where, p20,7>0, |z|<],Re(c)>Re(b)>0 when p=0.

Motivated mainly by investigations of the extended 7 - Gauss hypergeometric function ,R(z) given
by Virchenko et al. ([7], p.90, eq. (5)), we introduced the extended 7 - Gauss hypergeometric function
,R,(z) as follows:

For A.aheC and c.deC\Z, wehave

c)r(d)z (4p),T(a+n)T(b+7n) 2"
T(a)T(b)S T(c+wm)T(d+7n) n!

where. p > 0,7 > 0,|z| <1,Re(d) > Re(a) > 0,Re(c) > Re(b) > 0 when p=0, and (4, p), is the generalized

R (2)=3R; ((4.p).a.bie.d;z) =T L (15)

Pochhammer symbol ([6]. p. 484, eq. (2)) defined as
T (A+n)

(A.p),=¢ T(2)
(A), (p=0; A,neC).

(Rel(p)> ), 1

Remark 1. If we take b =d then (1.5) reduces to extended 7 - Gauss hypergeometric function ,R"(z) studied

by Parmar ([2], p.422, eq.(2.1)); further if we set 7= 1then (1.5) reduces to the extended Gauss hypergeometric
function ([6], p.487, eq.(17)). '
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Remark 2. If we set p =0 in (1.5), then it reduces to the Gauss hypergeometric function , R, (/?., ab,cd,, z)

studied by Saxena et al. [3].
Remark 3. If we set 7=1, p=0 in (1.5), then it reduces to the classical Gauss’s hypergeometric function , /7, :

further. if we take b =d then it reduces to the classical Gauss’s hypergeometric function , ;.

2. Integral Representation and Derivative Formula
Theorem 1. The following integral representation for , R} (z) in (1.5) holds true:

I'(c)

—_—N e - a-1 c—a—1 T 3 -
I(a)T(c- a)]" (1-0)"", R ((4.p),b.d: 21" )dt (2.1

R ((A,p),a,bic,d;z) =

where, Re(p)>0,7 >0,Re(d) > Re(a)>0,Re(c)>Re(h)>0 when p=0.
Proof. Considering the following elementary identity for the Beta function B(m,n) :

r(mI'(n) | i
B(m,n)= L() = It”’" (1-1) dt
I(m+n) 3
in (1.5) and using the series representation of extended 7 - Gauss hypergeometric function ,R,"(z), then we get

the desired integral representation (2.1).
If we take Remark 1-3 into account then we can obtain many special cases of (2.1).

Theorem 2. The following derivative formula for , R (z) holds true:

ft Le—n-1
(%j [z”" 3R§((l,p),a,b;c,d; wz’)}=&T(cr—’(S) RS ((z?,,p),a,b;c—n,d; wz’). .22

Proof. According to the uniform convergence of the series (1.5), differentiating term by term under the sign of
summation; and finally using (1.5) then we obtain the R.H.S. of (2.2) after little simplifications.
Remark 4. If set b =d in (2.2). then we get known result due to Parmar ([2], p. 424, eq. (3.7)).

3. Mellin Transform

The Mellin transform of a suitable function f(7) is defined, as usual, by
M{f(r):r—)s}:jr"‘f(r)dr, .. (3.1
[4]

provided that the improper integral in (3.1) exists.
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Theorem 3. The Mellin transform of the function R} (z) defined by (1.5) is given by
M {],R; ((/l,p),a,b;c,d; z):p —>s} =T'(s)(4), R, (A+s,a,b;c,d;r;z), .. (32)

where, Re(s)>0 and Re(A+s)>0 when p=0.

Proof. Using the definition (3.1) of the Mellin transform, we find from (1.5), that
{ R ((l p).abcd.z ) p—> s}
_ ]ip‘ (T(c)T(d) Z(z’{ p),T(a+ )T (b +rn)z_" B
I'(a)T(b) = [(c+zn)T(d+7n) n!
Interchanging the order of integration and summation, we have
I"(c)l‘(d) Zl"(a+'z'n)1"(b+m) 21
I(a)T(P) ST (c+n)T( (d+tn) n! T(4

)I ', (A+n)dp.
Now, using the result of Chaudhry and Zubair ([1], p. 16, eqn.(1.110)) given by
[T, (A+n)dp=T(A+s+mT(s), (Re(s)>0). - .. (33)

then we get

M{3Rf(( ,p).a.b.c.d. *)'p——)?}
T( )T ()T (d) Zl"(ﬁ.+s+n)l'(a+m)l“(b+rn) z"
A)I‘(a)l‘ b) = T'(c+7n)T(d+17n) n!

’ (c)T(d) (A+s), l"(a+rn)I'(b+rn) z"
=Is) (l)‘ F( a)I'(b) ,,z_;‘; I'(c+zn)T(d+7n) '

By using, (1.3) into account then we get the result (3.2).This is the complete proof of Theorem 3.
Remark 5. If we put b =d in (3.2), then it reduces to given result by Parmar ( [2], p. 424, eq. (4.2)).

4. Fractional Calculus Approach

In this section, we consider compositions of the Riemann-Liouville fractional integrals and derivatives

I7. and D7 ([4]. Section (2.3) and (2.4)):

(12, £)(x) j / )?ddr (e C, Re(r)>0), L @D
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a 4 d ! n—a
and (Dm_f)(x):(z) (172 £)(%), (ace €. Re(o) >0; n=[Re(er)]+1) .. (4.2)
Theorem 4. Let pe R, =[0,-), A,a,b,c.dweC and Re(a)>O,Re(c)>O,Re(z')>O then for x> p the

following relations holds true:

(I; {(I - p)c'l B ((/1, p).a,bcd, o(t- p)r)})(x)

Az=oY " I'le . ] ... (4.3)
=( lf)()c+a)( ) R ((A,p),a,b;c+a,d; o(x—p) )
and
(D2 {(e-0) " 1 ((z,p),a,b;c,d; o(1-p) )})(*)
.. (4.4)

Proof. By virtue of the formula (4.1) and (1.5). the term by term fraction integration and the application of the

relation (see [4]. 2.44)

(12 (1 -a)’ ‘)(x)= r(ra(f)ﬁ) (x-a)"*",  (a,BeC,Re(x)>0,Re(B)>0),

yields. for x> p
(75 (- p) 7 R p) e, ds (e p) )
(l { I'(c)T'(d) Z(A p), ]"(a+rn)1"(b+'m) w' (i- )N,, ,}J(x)

T'(a)T(b) = T(c+zn)T(d+n)  n!
(x if)()ﬁal)—(c) _’((l,p),a,b;c+a,d;a)(x—p)r).

Next. by using (4.2) and (1.5), we have
(03 {(-p) "R ((2.p) abiesds (=) ) 0)
_ (Z‘:;]( (o) (A p).abicds 0 (=) ) |)(2)

Now, using (4.3) and (2.2), we obtain the R.H.S. of (4.4). This is the complete proof of Theorem 4.
Remark 6. If we take b = d in (4.3) and (4.4), then we can obtain known results given by Parmar ([2], p. 425, eq.

(5.3) and (5 .4)).
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5. Concluding Remarks

In the present paper we investigated an extended 7 - Gauss hypergeometric function ,R;(z). and

obtained its several properties. The obtained results are extension of work done by Parmar [2].
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In the present paper. we first establish an interesting finite double
integral involving a general class of polynomials and the H -function. On
account of the most general nature of the function occurring in this integral, our
findings provide interesting unifications and extensions of a large number of new
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known results given earlier by Ronghe, Soni, Anandani follow as simple special

cases of onr main findings.
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1. Introduction

The H -function ([8].|9]) occurring in the paper will be defined and represented in the following manner [3]

(a SO A) ,(a u)
2y 2] HMN[ N N*”’]zq'—f 3@ 2odg, .0

=T

(b B )lM (b; BJ Bim +1,0
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M N A
T re;-pH M {ra-a+ap}

‘h-l]" _(E) _ J{:l J ;:1 12
where [0} = 0 B P ..(1.2)
N {ra-s,+p8 [’/ 1T Ta@;-ad

j=M+1" ’ J=N+1

which contains fractional powers of some of thc gamma functions. Here, and throughout the paper

a;(j=l...P)and h; (j=1.....0) are complex parameters, o; 2 0(¢=..P),B;20(j=L...0) (notall
zero simultancously) and the exponents A; (j=L....N) and B; (j=M +1....0) can take on non-integer

values.

The contour L in (1.1) is imaginary axis Re(§)= 0. It is suitably indented in order to avoid the

singularities of the Gamma functions and to keep those singularities on appropriate sides.

Again. for 4; (j=1,..., N) not an integer, the poles of the Gamma functions of the numerator in (1.2) are

converted to branch points. However, as long as there is no coincidence of poles from any

l"{b! ~BJ.§)U =L.... M) and Tl -a; +0tj§)(j= l,..., ) pair, the branch cuts can be chosen so that the

path of integration can be distorted in the usual manner.
Evidentlv, when the exponents Ai and Bi are all positive integers, the H -function reduces to the well-
known Fox’s H-function [4.17].

The basic propertics and the following sufficient conditions for the absolute convergence of the defining

integral for the "H -function have been given by Buschman and Srivastava [3].

M N Q P
Q= ¥ Bj'" ¥ Ajc:j— ¥ BJ'B.T'- ¥ aj>n ..(1.3)
fr= | I=1 j=M+1 ’ Jj=N+1
and
larg(2)| <%n:ﬂ, (14

where €2 is given by (1.3).
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The behaviour of the H -function for small values of [z| follows easily from a result recently given by

Rathic | 11.p.306. cq. (6.9)]. We have

gM. N
HI).(_J [Z]zo

|z|0E)? =|S'?2‘M[Rc(bj/ﬂj):|,|z|—+0. ..(15)

Investigations of the convergence conditions, all possible types of contours, type of critical points of the
integrand of (1.1). ¢tc. can be made by an interested reader by following analogous techniques given in the well
known works of Braaksma [2). Hai and Yakubovich [7]. We however omit the details.

Also S)'[x]occurring in the sequel denotes the general class of polynomials introduced by Srivastava [16.

p-leg (D]

[r2/m] (_n)mr

Splxl= 3 ———A,x", n =012, .(1.6)
r=0 :

where m is an arbitrary positive integer and the coefficients 4, ,.(n.r 2 0) are arbitrary constants, real or

complex. On suitably specializing the' coefficients 4, , , S;'[x] vields a number of known polynomials as its

special cases. These include. among others. the Hermite polynomials, the Jacobi polynomials, the Lagurre

polynomials, the Bessel polynomials. the Gould-Hopper polynomials, the Brafman polynomials and several

others [18.pp.138-161].

2. Main Integral

1 7[3'2
I j erll(ll+i'|)”(sin9)(1-l(cose)ﬁ—]
0 n

Pl 0= ax+b(- )P CyFc.d:p: ax/ax+b(l-1x)]

sy [yc'm("ur VB (s5in0)" (cos8)” (@x) (b0 - ) [ax+b(1-0TF" "']
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ﬁ‘}f’QN [:e“‘("*")e(sina)"(cos 8)"(ax)! (b0 - X)) [ax+b(1 - )" %

(@@ jidjh, N @5 0N 1P

_ do dx
BB aeCpP B par 41,0

e(D‘I'!O! J{ 2 In:'m] (_n)mr
= o E | An.r (}J e
aP b r=0 T

wru'/2r
)

(l—a—u'r,u;l),(1-p=v'r,vl),

G5B a @B B +1,00

ﬁM,N+5 L otu /2
P+5,0+43|°

(l—p~h'r.h;l),(l—c—k'r,k;l),(l—p—G—h'r-k'r+c+d,h+k;l).
(l—ﬂ—B-u'r—v'r.u+v;l),(1—p—c—h'r—k‘r+c,h+k;l),

(@i Ay N-(@50 5N 41, p »
(i-p—o—h'r—k'r+d,h+k;1) wf2)

where (i) u'=0.v'20:u 20, vz 0 (not both zero simultaneously)

h =0k =0 (notboth zero simultancously)
i Retey+u 2% ) [ Re(s,/B) | >0
min
Re®) +v | 1%y [ Recr; 18)) | >0,
Re(p) + IEIFEM[R‘:(&}JB;)] >0

Re(o) + k ];;EM[Rc(bj!ﬁj)} >0

(iii) The H -functions occurring in (2.1) satisfy conditions corresponding appropriately to those given by

(1.3)and (1.4). and aand bare such that the expression [ax +b(1—x)]is not equal to zero where 0 < x < 1.
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Proof: To establish the double integral (2.1), we express the H -function occurring in its left-hand side in terms of
Mcllin-Bamnes contour integral given by (1.1)the general class of polvnomials occurring therein the series from
given by (1.6) and then interchange the order of 6, x —and & -integrals (which is permissible under the conditions

stated with (2.1) )so that the left-hand side of the integral (2.1) (say A ) assumes the following form after a little

simplification;

_[n "'I(-"}mr Bkt V! 1 _ h ki
A=Y TA,,_,(_\'CI‘ a E{mg)(m %)

r=i)

n'2
{ j [,u.){tx+[5+u'r+|"r+n Z+vg)e (sin e)u+ w'r+ug-1 {cose)ﬂ+"'r+v§—lde
0

{ }xp+l:'r+hé,-1(]_x)0+k'r+k§—l[ax_._b(l_x)]—p—o'—h'r—k’r—hﬁ—k&
0

2 Fle.d; p; ax/ax+b(1-r)]dx}d§ ...(2.2)

iy Now evaluating the inner-integrals occurring in (2.2), with the help of the known result [10] given below
n2 r
J cm(u+ﬂJH(SinB)r:—l(cose)ﬁ—l ;1.‘1’""‘-‘3M (23)
0 (o + B)

where Re(at) >0, Re(p) >0

and a known integral [13]

]
[ -x)" ax+b(1 -0 P K [e.d: p: ax/ax+b(l-x)] dx
1]

_ Tp) T(o) T(p+0-c—-d)
a” b°® INp+o-¢) (p+0-d)

.(2.4)
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where Re(p)>0 , Re(o)> O,Re(p+o—-c—-d)>0, a and b are such that the expression

[ax+b(1—x)] is not cqual to zecro where 0 < x < 1. we get after a little simplification

A_['i'a(—n)mr,q (ye@TH 2y p O%eI2 ’T T(oe+u'r+ul) T(B+v'r+vE)
= 2l PEC s T+ B+u'r+v'r+ug+1E)

Tp+h'r+hE)T(c+k'r+kE) Tp+o+h'r+k'r+hE+kE—c—d)
Tp+o+h'r+k'r+hE+kE—c)T(p+o+h'r+k'r+hg+kE-d)

Q&) (ze®™2 \odt .(2.5)

On reinterpreting the Mellin-Bames contour integral occurring in (2.5) in terms of the H -function given by

(1.1).we casily arrive at the desired result (2.1).
3. Special Cases
[i] If we taked =p.c =0,in result (2.1). we arrive at the following integral which is also new and sufficiently

general in nature

1 ®/2
j "m[[l+ﬁJH(SIIDH)“_‘(CDSB}B-I Ip-l (I = I)U_I[G,\‘-Fb(l—x)]_p_a

0 ]

s [0+ Bising)" (cos) @x 11 - Tax+b -0 |

=M .N

g [ze“’("*”)B(Sine)"(cose)" @x) (b1 - %)

(a0 ;54; Jaj,a )
lax+b( -0 ¥ /77 LN -’N"'I’P}ds dx

GjoBjhar @By Bpus 41,0
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—, )m r

r!

ewna!.”. |n mi(

wnru'2 ]r

Aﬂ,r (ve
aP o

r=Il)

(I-o—u'r ul),(1-p- virvil),(1-p=h'r,h;1),
Gj-Bm®jBi B 11 0

gM N+4 | _ wru/2
HP+4,Q+2[ £

(1'—0'—k'r.k;1)(ﬂj,aj:Aj)]’N.(aj,aj)N+I‘P, } (q”

(l—a=B-u'r-v'r, u+v ) (l-p-oc-h'r—k'r k)
provided that the conditions easily obtainable from (2.1) are satisfied.

[ii] Now. we give an interesting special case of (2.1) involving PEQ [5. p. 271, eq. (7)] which is also new and of

interest by itself,

1 ®/2
J‘j em{m-ﬁ-ﬂJH(Sine)u-l(cose)B-l
00

A=) Nax+ba- )P F[e.d:p; ax/ax+b(1-x))

"‘}?’I:,Fl’w("l+pl)G(Sin9)"'((:059)""(&1');"[5(] _‘x)]kI[G'X-I-b(I _ x)]_hr_kn]

lapo il y pt

rYo [”’;-5,:-3; ho? ¢ (5in0)" (cos0)” (ax)” b1 =x)F[ax+b(l - x)]"'_k]de dx

2
B L_UJ e/ 2 (nim) (=1),,

—_ A )
ap ;,0' rl nr (J' e

r=0)

(M'I:lr".?)r

(1 —o—u'rul),(1-f-v'r,v;1),

(0, 1), (1 —bj’BJ'Bj}],Q’

FLP+S | onu/2
P+5,0+4|

(]—p—h'r,h;l}.(l-—c—k'r,k;l),(l—p—G—h'r-k‘r+c+d,h+k;l),
(l—a—B—u‘f'—v'r.n-i-v;l),(l-—p—d—h'rHk'r-i-c,h-!—k;l),
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(1-p-oc—-h'r=k'r+d,h+k;l) B

provided that the conditions casily obtainable from (2.1) are satisfied.

liii] Also. we give an interesting special case of (2.1) involving the g -function connected with a certain class of

Feynman integrals [6. p. 98, cq. (1.3)]

| w2
j j L,cu[u+B}B(smg)“—l(cosﬂ)ﬁ_l
0 0

LU= ax+hU=-x)P %, R ([c.d: p; ax/ax+b(l-x)]
Sﬂ'[}'em(ul-"w)a(sin B)"'I(cosﬁ)v'(ax)hl[b(l - x)]kl[ax+b(l - x)]_h'_kl}

g[Y, Nt pze® P (5in ) (cos8) (ax )b (1 - x)f [ax+b(1 - x)r"'“’]de dx

T2 Ky T(p+ DI/ 2+ 1/ 2)Uim (-n),,
P20 Pl 2reyriy-t/2) = !

tl!!tu'.‘E)r

A".J‘ (y €

gl.S _onu/2|(l—oa—u'ru1),(1=-B=v'r,v;1),(1-p=h'r,h;1),
8,6 ~° O,1,(-t/2,1,1),-n,L1+ p),

(1—c—=k'r.k;1)(1-p—-c—h'r—k'r+c+d, h+k;l),
(1=a=B=u'r=v'r,u+v,1),(l-p—c—h'r=k'r+c,h+k;l),

=y, 1;0),0-y+t/2,1;D),(1-n,1;1+ p) (.3)
(1-p—oc—-h'r—k'r+d, h+k;l) e

where the g -function occurring in (3.2) is defined in the following manner [6, p.98, eq. (1.3)]
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el b Kyyp'TU+1/2)B(1/21/2+7/2) j" d_g(-z}ﬁr(-g)r(«ﬁg)r(y-rfz+§)

(=D?22*? g(T (Y -1/2) 2wi (q+E,)l+"’ TA+t/2+E)

Ky _N(p+)r(/2+71/2)
1P 22 P! 2r(r(y -1/ 2)

A=y, LD, A-y+T/2,L0,0-1,11+p) | 4y
0.1, (=t/2,1;1),(-n, L1+ p), e

—=1,3[
H 3‘3|:_‘.
K;=2"97792/1(d /2)19.p4121, eq (5)] and conditions casily obtainable from (2.1) are satisficd.

If we take n =0 (the polynomial S)'[x] will reduce to A pand can be taken to be unity without loss of

generality). the results (2.1),(3.1) and (3.2) reduce to the known results obtained by Sharma [14]. Also, on taking
n=0and A;(j=L...N)= B;(j=M+1,....0) =1, inresults (2.1) and (3.1), we get the corresponding results
for the Fox H-function given by A K. Ronghe [12] and Soni [15] respectively. Again, if we take n =0 and
A (=L N)=8B;( =M +1....,0) = land h = 0in result (3.1), we get a known integral by Soni [15].1f we
further take k = 0 in the result thus obtained we get another known result given by Anandani [1]. Specials cascs

of (3.1) can also be given but we omit the details.
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Abstract

In this paper some interesting identities have been established connected
with basic hypergeometric series of type p4+1 9, which reduced to known and

unknown results and has some application in physical sciences.

1. Introduction

d
The difference operator D in the theory of basic function replaces the ordinary differential operator I

This difference operator D is defined as

f(x)- 1lex)

X

Df (x) = (0<qs1)

This operator has much importance in the theory of basic hypergeometric function and has been used by many
authors, Heine, E. [1]. Rogers L.J. [2] Jackson, FH. [3], Hahn,W. [4], Gasper, G [5].

This operator has been used to obtain some identities involving the function p419p.

When we take p = 1, then p+1¢p reduces to ,0;.

2. Notations

Following notations have been used :
2.1 g-shifted factorial is defined as

a)l = 1 n=0 <
(a), (1-47)1-g").. (10", g <1
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2.2. Dx° = (1 - q")x""'

23. (a),,, =(a),(a+n),

(@), ...(apﬂ )‘r "

iz (a) (B1)y - (bP),

3. Some Identities
The following new identities will be derived.

a +n,a2,...,ap+1
al—l . =Dn
3.1. (al) x p+l¢'p£ :x}
" b]stsobp

dy,...,a
B h-n-1 1o = Bpit] . _ "
3.2. (bl n)nx P+1¢P[bl —n,bz,...,bp a P

a +n—1
x p+l¢p[bl’”-b

-1
X p+]¢p [bl,bz,...,b

ay +n,.ap + ﬂ,...,ap+] +n
3.3. (al )" (az)”---(apﬂ)n P+1¢P b-[ +n,by + n,....bp +n a

ay—n.a,...a

al,..,,ap+l.

al,az,...,ap_H J}
X s

P

ﬁl,az,...,ap_'_]
;x 2
By By

p+l  p-a-ay..—aputn J

X | X
pH ¢p[b1,b2....,b !

)
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oo

3.5. b —n) xA7"
(b —n),x ’g (l_qu)

(1 _ xqb, —al—az.‘.ap+1+n+k)

ay = H,..dy =R, 0500 — n.xqb'—al—az...—apﬂﬂi

ap,day,....0,4) —-ay—-ay...—a
Xp+1¢f’[b b bP xg T
1:925-..:0p

(1 _ xqbl-al*ﬂz,...—ap_‘_] +n+k )

36. (bl__a])”(b]—az)"...(bl-“apﬂ)niilo (l—qu)

a1,a3;.--,Ap4] ) bl—al—az...—ap,,,lwiJ

x 2
p+1 % [bl +nby. b,

4. Proof

First identity of 3.1
Expanding R H.S. of identity 3.1 using 2.2, we get

al,.. .,ap+l
4.1. D" [x“ﬂ‘"“ p110p { ; xJ]
Biyorss By
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[by24]

_ D" -xa1+n—1i (@), (@2), "'(ap+l)k xk]

k=0 (q)k (bl)k "-(bp )k ‘

-7 k§) (‘I)k(bl)k"'(bp)k

| (“l )k (02 )k "'(aP“)k _xa1+n-l+kj\

Using 2.2 term by term » times, we get

=X

a—1 < (al) (az) ...(aPH) . " "
kgo (ql;k(h)‘;...(bp)kk(l'qa] £)(1-qat*41) (1= gatkent) o

Using 2.1 and 2.3, we get

= (“1+")k("2)k---(ap+1)kxk

k=0 (‘I)k (bl)k"'(bp)k

B

* [ by 2.4]

:D"i
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il S (a‘)k(az)k"‘(”ﬁ!)k _ o bh—l+k\ _B+k-2
0 kgb () (B1)y (85 ), (1-a"")

Using difference operator defination » times,

_ 5 (“I)k (az)k"'(apﬂ)k k-l _ ghtken) B+k-n—]
Z o, ), )

Using g-shifted factorial, we get

(@) (apn1),

9); (B _")k“'(bp)k

(b - n), 21y,
=

But when & < n, all differences are zero and we get terms from k > n.

Replacing k by k + n, we have

k+1
o (@) (@) () (47),

=(b])n(b2)"...(bp)n;§) (Dt () (65, .,
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= \ap+n) lay+n) ..\ay +n
Using 2.3, weget. = (1), (42), -(ap1), 3 (l(q)zk(z(ain)k)f-(ff +;) b
= p k

a B @ +1 +n
- (o) 65}, (o ot ey L.

ay+H,....a

-1 1 ERRRERS 23|

44.LHS. = (@), " pn 6, &
Br.....b,

Replacing a, by (& — a;), we obtain

e by —a +n,...,a,,
(bl—al)nxbl llPHq]P(b], 3 LELgeo

)

Using 3rd transformation of basic hyper geometric function

N (1_ xqbl—a]+n+a2+..AaP+l—pb|+k)

) chma
(b =), x17% ’g) (l_qu)

><p+1¢p(b]’b2 _____ v ;xq ] ..(440)

Changing upper parameter, we get

oo

bl—at,...,a +]+}’!+k
1-xq # ay—n
| —R.Ay,.... 0,4 —@y =Gy .., @y +H
P _xqbl @ =ays-18p+]

_ b—a -1 X 3
(b =), x kl}] (l_qu) P“q’f’[b,,bg,...,bp

ap.as,... 0,4
n| a+n-l1 P,
RHS.= P [x p+1%p (bl__bz,...bp, xJ]

Using (4.4.1)

a|+a2...ap+1—pb|+k
xq b —a,b —ay,..b —a,y, ‘xqal+a'2+...ap+1—pbi

w |1-
D" xa[-i—n—l H (
k=0
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Changing upper parameters, we get

(1 _ xqbl_al"-_ap+1+k)

(1 - xgk)

D" xbi"“l +n—-1 H
k=0

q) ﬂ];-.-,ap-l-l'x bl_“l---_“pﬂ
'p+] P b E) q
b],"': p

4.5. Taking LHS of identity 3.2, we have

QI,HQ,...,GP_H .x]
P

_ b—l-n
(by —n), x p+10p (b] —n,by,...,b

using (4.4.1) and changing upper parameters we get the required result

o

(bl _ ")H xb,—l—nl—[

k=0 (1 = qu)

(1 _ xqa|+a2...+ap+l-pb| +n+k )

X1 ¢P [bl -n-a,bj-n-ay,...5 - h—=dp :xqa1+az+...+ap+1—bp|+n}

by —nby,....b,

o

(b] __n)n xbl—l—nH

k=0 (I—qu)

(1 _ xqbl-a] —ay..—apy+n+k )

a —n,ap _n=""ap+1 _n_ bl—al—az...—ap+1+n
Xpt1 9p b —nb 5 . xq
3522+-5%p

a,ay,..., 0,4 ]
%

bi,by,....b,

Now RHS. = D" [xb’"pmp[

Using (4.4.1) and changing upper parameters we get the required result

h-ay..~a,4+k
e |1=xg e ) @, 05,0541
D" xb1—1l—[ ( 0 [ 2 P .th-ﬂl-ﬂz----ﬂpﬂJ
p 2
k=0 (l—qu) E blsbgy---,bp
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m+nay+n,..a,t+n
4.6. Start with identity (al ),. (a2 ),,'-'(apﬂ )" p+1¢’p by + M by,....b

¢ ﬂl,ﬂz,...,ap_',l.x
p+l p bl,bz,,”,bp ]

a +na;+n,....ay +n]

LHS. = (@), “'(“P+1)n rit¥ [bx +mby,...b,

P

=(bl)n(b2)n...(bp)nD”

Replacing upper parameters as follows :

a by b —a, a,by b —as,...a,. by by —dp.. wehave
| 1 2 P P

by—ay+nby—ay+n,.b—a,, +n
= (b —a) (b -“2),,--'(151 —ap+])n p+|¢p(bl+n,b2’“"b ? = ;x}

p

Using transformation and changing upper parameters, we get

(1 _ xqbl-—al—az...-ap.,.l+n+k)

-6 - =) =ap, B

.4y, .. '>ap+] bl"’!‘“l---‘“pﬂ*"
><p+'l ¢p > X
bl —n,bz,...,bp

o al7a2r’“=ap+l_x
PHITP| by, by,..b,

Using (4.4.1) and changing upper parameters, we obtain

RHS.= (81),(52),(ba), D"

(1 _ xqbl —aj—ap,..—ap4+k

~ (), (52), - (5,), 2" | TI

ap 02.,..,ap _m—aj..—a,,
- Xp+!¢p( 'xqblal =y ]H
k=0 (l_xq )

bbb,
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5. Deductions
If we put p = 1, then the above results hold for ,6,.

Taking a; = a, a, = b and lower parameter 5, = ¢, we obtain the following :

5.1 (a), x* a0y (a+n,be;x) = D" [x“*”“2¢, (a,bic: x)]
5.2 (c - n)" xc_l_"gtbl (a.b;ec - n;x) =D" [x““zq), (a,b;c;x)]

5.3 (a),(b), 201 (2" x) = (¢), D" [ 261 (a.b3:%) ]

- (l— Jch—a-b+n+k) (a—n,b.x c—a-—b+n)
k=0 (1 - qu) -

o

56 (c-a) (c-b), []

k=0 (1 = qu)

(1 _ xqc—a—b+n+k

201 (a__b;c + xq"‘ﬂ—b+n)

oo c—a—b+k

=@, " IT 72—

k=0 (1 . qu) 20 (a,b; c;xqc—a—b)

The identity (5.5) is the basic analogue of well known result due to Jacobi for the ordinary hypergeometric
function.
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(1]
(2]
(31
[4]
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