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Abstract 

Evolutionary behavior of a nonlinear prototype multistability model 

has been investigated to study various stable states as well as multistability, 

chaos and complexity appearing within the system. The system has been 

represented by 2-dimensional coupled discrete equations. Bifurcation 

diagram of the system has been obtained by varying a parameter while 

keeping other parameters same and proper analysis has been performed. For 

a certain set of values of parameters, the system shows chaos. Numerical 

values of Lyapunov exponents are calculated to confirm regular and chaotic 

evolution. To investigate complexity of the system, topological entropies have 

also been. These measurable quantities have been represented graphically 

which help in meaningful discussion of evolution properties. Finally, possible 

correlation dimension of the chaotic attractor has been calculated. 

Key Words: Chaos, Bifurcation, Lyapunov characteristic exponent (LCE), Topological entropy, Correlation 

dimension. 

AMS Subject Classification: 34H10, 34C23, 37L30, 37B40 

1. Introduction 

Evolutionary state of a nonlinear system can bedetermined by its initial conditions and the parameters 

involved in it. Chaos is a state of the system showing unpredictability and sensitivity to the initial condition. 

Real systems are mostly of complex structure and during evolution, one observes properties like bifurcation, 
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chaos, multistability etc. depending on the structure of the mathematical model representing the system. 

Present trends of researches in nonlinear system are also to understand complexity behavior of the system 

arising due to interaction between components within it. Unpredictability observed is due to chaos and 

complexity in the system.Complexity of different type has been explained extendedly through some important 

articles [1- 4]. Following are the measurable quantities for any complex systems: (i) Lyapunov exponents, 

(LCEs), positive value guarantees the presence of chaos and (ii) the topological entropies which provide the 

presence of complexity; more the topological entropy signifies the system is more complex, and also, (iii) the 

correlation dimension for the chaotic attractor for chaotic evolution of the system.   

The objective of the present work is to investigate complexity and chaos phenomena a nonlinear 

dynamic model proposed recently, [5, 6], which show its multistability character. Here, analyzing the stability 

of steady state and the bifurcation phenomena we further proceed to obtain various measures of complexity 

such as LCEs, topological entropies and correlation dimensions. Then, we present these measured quantities 

graphically and explain their appearances.   

2. Dynamic Model  

)yx(γxα1x nn

2
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+  
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+               …(1) 

 

(a) Fixed Points and their stability : 
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For g = 0.29 & α = 0.74 coordinates of above fixed points are respectively obtained as  

P1*(0.6689, 0.6689), P2*(-2.02025, -2.02025), P3*(-2.35377, 0.21863) and P4*(0.21863, -2.35377). Using 

proper stability analysis, it has been observed that only the fixed points P1* and P2* are stable and P3*, P4* are 

unstable. Possibility of occurring of chaotic saddle near P3*, P4* may happen. As in this case orbits initiating 

close to P1* and P2* are also stable and the system becomes regular. In Fig. 1, we have drawn the time series 

graphs for g = 0.29 & α = 0.74 with initial point (0.5, 0.5), nearby P1*. The graphs are of periodic nature.   
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Fig. 1: Time series graphs and phase plot of system (1) for g = 0.29 & α = 0.74 with initial point (0.5, 0.5). 

 

 

(b) Bifurcation Diagrams: 

 

Bifurcation in a dynamical system is said to occur when phase portrait changes its topological structure 

with variation of parameter. During the processes of variation of selected parameter of the system while 

keeping other parameters constant, a stable steady state solution first bifurcates into two. Continuing this 

process, one may observes four stable steady solutions, then eight etc. Finally, one may get emergence of 

chaos. In many ecosystems, a special type of bifurcation called Hopf bifurcation, results during the 

eigenvalues leading to formation of limit cycle. A limit cycle may subsequently undergo a bifurcation 

resulting in 2-Torus, 3-Torus etc. Creation of tori forms another route for transition from stationary to chaotic 

behavior; a turbulence.   

 

In the present case, we have obtained bifurcation scenario of the system (1) by varying the parameter α 

while keeping g, g = 0.29, constant, (see Fig. 2). 
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Fig. 2: Bifurcations along x and y axes of the system (1).  Lower figures are for close range of g 

showing periodic windows. 

 

(c) Chaotic Motion and Chaotic Attractors: 

System (1) evolve chaotically for g = 0.29 and α = 1.7 and one finds chaotic attractors. In Fig. 3, time series 

plots and plot of chaotic line form attractor are given. 
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Fig. 3: Chaotic time series plots and plot of line shaped chaotic attractors for g = 0.29 and α = 1.7. 

 

3. Measuring Chaos and Complexity 

 

As stated, most real systems are of complex structure and during motion they exhibit chaos, 

complexity and irregularity. Chaos is measured by Lyapunov exponents (LCEs), such that any LCE < 0 

signifies system is regular and, on the other hand if LCEs > 0, the system is chaotic. Degree of chaos lies in in 

the fact that how large LCE is. 

 

(a) Measuring Lyapunov Exponents, (LCEs): 

 
 Chaotic attractor exhibits during evolution for g = 0.29 and α = 1.7 and then the system shows 

sensitive dependence on initial conditions. At this stage, two trajectories starting together with nearby 

locations will rapidly diverge from each other and, therefore, have totally different futures. The practical 

implication is that long-term prediction becomes impossible in a system where small uncertainties are 

amplified enormously fast. Lyapunov characteristic exponents [7- 11], is very effective tool for measuring 

regular and chaotic motions since this measures the degree of sensitivity to initial condition in a system. 

Systematic analytic description for derivation of LCEs be given in some recent book of nonlinear dynamics, 

e.g.  [12 - 15].  

 In Fig. 4 we have drawn plots of LCEs for its chaotic motion with above stated parameter 

values. 
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Fig. 4: Plot of Lyapunov exponents (LCEs) of system (1) for g = 0.29 and α = 1.7. 

 

(b) Topological Entropies: 

Topological entropy, a non-negative number, provides a perfect way to measure complexity of a 

dynamical system. For a system, more topological entropy means the system is more complex. Actually, it 

measures the exponential growth rate of the number of distinguishable orbits as time advances [16, 17]. 

For the system (1) with parameters g = 0.29 and (a) 0.5 ≤ α ≤ 1.0 & (b) 0.72 ≤ α ≤ 0.755, we have calculated 

topological entropies and plotted as shown in Fig. 5.In these regions system does not have chaotic motion but 

here, we find significant topological entropy. 

 

           

Fig. 5: Plots of topological entropies for g = 0.29 and 0.72 ≤ α ≤ 0.755. 

 

(c) Correlation Dimension DC: 

 
Correlation dimension provide the dimensionality of the system. If the system evolve chaotically, its 

correlation can be interpreted as the dimension of the chaotic attractor which has a fractal structure. To 

calculate correlation dimension DC, here we have used the procedure described by Martelli, [15].    
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To obtain DC for our system, first we have calculated correlation integral C(r) for an orbit of the system as 

explained in a recent article [18]. Then, a plot, Fig. 5, is obtained for certain data related to this C(r). 

 
Fig. 6: Plots of data of correlation integral 

 
For α = 0.74, correlation dimension is zero as it is a regular case but for α = 1.7 correlation integral 

data when plotted form a curve. In this case, for α = 1.7, when the correlation integral data used for linear fit, 

the linear fit line obtained as 

     Y = 1.61922 – 0.830034 x  

 

The y-intercept of this line is 1.61922 approximately. So, this analysis implies, [15], the correlation 

dimension obtained, approximately, as DCº 1.62 .   

 

4. Discussions 

 

The studies made here on Kraut system, shows that during evolution this system evolve regularly as 

well as chaotically in some parameter range, Fig. 1 & Fig. 3. Also, the system shows enough complexity even 

when it is not chaotic. Bifurcation diagrams are drawn, Fig. 2, to demonstrate how such phenomena are 

evolving during bifurcation. Measure of chaosis given by plot of LCEs, in Fig. 4, and those of complexities is 

given by plot of topological entropies, Fig. 5. Finally, dimensionality of the chaotic attractor is obtained as the 

correlation dimension; which is, for case g = 0.29 and α = 1.7, DCº 1.62. 
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EOQ Model of Instantaneous Deteriorating Items with Controllable 

Deterioration Rate with Selling Price and Advertisement Dependent 
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Abstract 

  This paper deals with an economic order quantity (EOQ) model for 

deteriorating items with price and advertisement dependent demand. In this 

model, shortages are allowed and partially backlogged. The backlogging 

rate is dependent on the length of the waiting time for the next replenishment. 

The purpose of this paper to develop an inventory model for instantaneous 

deteriorating items with the considerations of facts that the deterioration rate 

can be controlled by using the preservation technology (PT) and the holding 

cost is a linear function of time which was treated as constant in most of the 

deteriorating inventory models. This paper aids the retailer in minimizing the 

total inventory cost by finding the optimal order quantity. The proposed 

model is effective as well as efficient for the business organization that uses 

the preservation technology to reduce the deterioration rate of the 

instantaneous deteriorating items of the inventory. 

KEYWORDS  Deteriorating items, Holding cost,  Inventory, Partial Backlogging, Preservation technology, 

Shortages  

1. Introduction  

 

Deterioration is defined as decay, damage, spoilage, evaporation, loss of utility or loss of marginal 

value of a commodity that results in decreased usefulness. Commonly inventory models deal with non-

deteriorating items (i.e. items that never deteriorate) and instantaneous deteriorating items (i.e. as soon as they 

enter the inventory they are subject to deterioration). Most physical goods undergo decay or deterioration over 
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time, example being medicines, volatile liquids, blood banks and so on. So decay or deterioration of physical 

goods in stock is a very realistic factor and there is a big need to consider this in inventory modeling. 

Researcher in the field of inventory control have suggested various model taking into consideration 

different demands and deterioration. The first attempt to describe the optimal ordering policies for such items 

was made by Ghare and Schrader (1963). They presented EOQ model for an exponentially decaying 

inventory. Dave and Patel (1981) developed the first deteriorating inventory model with linear trend in 

demand. They considered demand as a linear function of time. Goyal and Giri (2001) gave recent trends of 

modelling in deteriorating items inventory. They classified inventory models on the basis of demand 

variations and various other condition or constrains. 

Ouyang, Wu and Chang (2005) developed an inventory model for deteriorating items with 

exponential declining demand and partial backlogging. 

Alamri and Balkhi (2007) studied the effect of learning and forgetting on the optimal production lot size for 

deteriorating items with time varying demand and deterioration rates. In (2008) Roy Ajanta developed a 

deterministic inventory model when the deterioration rate is time proportional demand rate is function of 

selling price and holding cost is time dependent. Skouri, Konstantaras, Papachristos and Canas (2009) 

developed an inventory model with ramp type demand rate partial backlogging and Weibull’s deterioration 

rate. Mishra and Singh (2010) developed a deteriorating inventory model with partial backlogging when 

demand and deterioration rate is constant. They made Abad (1996, 2001) more realistic and applicable in 

practise. 

Hung (2011) gave an inventory model with generalized type demand, deterioration and backorder 

rate. Mishra and Singh (2011) developed deteriorating inventory model for time dependent demand and 

holding cost with partial backlogging. Leea and Dye (2012) formulate a deteriorating inventory model with 

stock dependent demand by allowing preservation technology cast as a decision variable in conjunction with 

replacement policy. Maihami and V Kamlabadi (2012) developed a joint pricing and inventory control system 

for non-instaneous deteriorating items and adopt a price and time dependent demand function. Sarkar and 

Sarkar (2013) developed an improved inventory model with partial backlogging time varying deterioration 

and stock dependent demand. Tam and Weng (2013) developed the discrete-in-time deteriorating inventory 

model with time varying demand, variable deterioration rate and waiting time dependent partial backlogging. 

Sanjay kumar singh (2014) developed an inventory model with optimum ordering interval for deteriorating 

items with selling price dependent demand and random deterioration. Chauhan A and Singh AP (2014) 

developed an optimal replenishment and ordering policy for time dependent demand and deteriorating with 

discounted cash flow analysis. In (2015) developed an improved inventory model with an integrated 
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production inventory model with back order and lot for lot policy in fuzzy sense. In this paper, he extended 

Banerjee (1986) and Mehta (2005) models with the assumption that the backorders for buyer is allowed. In 

that model, he considered the integrated inventory model with fuzzy order quantity and fuzzy shortage 

quantity. 

SR Singh (2016) developed an inventory model with multivariate demands in different phases with 

customer returns and inflation. He discussed the impact of customer returns on inventory system of 

deteriorating items under inflationary environment and partial backlogging. 

Kousar Jaha  begum (2016) developed an EPQ model for deteriorating items with generalizes Pareto 

decay having selling price and time dependent demand. The deterioration rate of items in the above 

mentioned papers is viewed as an exogenous variable which is not subject to control. In practise the 

deterioration rate of products can be controlled and reduced through various effects such as procedural 

changes and specialized equipment acquisition. The consideration of PG is important due to rapid social 

changes and the fact that PT can reduce the deterioration rate significantly. BY the efforts of investing in 

preservation technology we can reduce the deterioration rate. 

In the present work an EOQ model of instaneous deteriorating items with controllable deterioration 

rate for selling price and advertisement dependent demand pattern over a finite horizon is proposed in which 

the inflation and time value of money are considered. Shortages are allowed and partially backlogging in this 

model. Holding cost in linear function of time. So in this paper we made the model of Mishra and Singh 

(2011) more realistic by considering the fact that the use preservation technology can reduce the deterioration 

rate significantly which helps the retailers to reduce their economic losses. 

 

2.   Assumptions and Notations 

The given mathematical model is based on following assumptions and notations 

2.1  Notations  

1. A is ordering cost per order, C is purchase cost per order, H(t) is the inventory holding cost per unit 

per unit time. 

2. ∏� backordered cost per unit short per time unit. 

3. ∏� cost of lost sale per unit. 

4. £ is the preservation technology (PT) cost per reducing deterioration rate in order to presence the 

product, £>0. 
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5. θ is deterioration rate and m(£)  is the reduced deterioration rate due to use of preservation 

technology. 

6. D� � Q �m
£�	is the resultant deterioration rate 

7. IM is the maximum inventory level during [0,T] 

8. IB is the maximum inventory level during shortage period 

9. Q = (IM+IB) is the order quantity during a cycle of 
�
��, ��, £� is total cost per time unit. 

10. 	
 � 
������	is the length of the cycle time, where ��is the time at which the inventory level reaches 

zero,	�� � 0 and �� is the length of the period during which shortages are allowed �� � 0. 

11. 		��
��is the level of positive inventory at time t, 0 � � � ��. 

12. 		��
��is the level of negative inventory at time t, �� � � � �� � ��. 

13. ��
�� is the Backlogging rate and μ is backlogging parameter. 

2.2  Assumptions 

1. The demand rate  D is a deterministic function of selling price, s, and advertisement cost	��   per unit 

item i.e.	�
�� , �� � 		�������										�  0,				!  1, 0 � # $ 1, a is the scaling factor, b is the index of 

price elasticity and # is the shape parameter. 

2. The lead time is Zero. 

3. No replacement or repair of deteriorated items takes place in a given cycle.. 

4.  Shortages are allowed and partially backlogged. 

5. The effects of inflation and time value of money are considered. 

6. The replenishment takes place at an infinite rate. 

7. During the fixed period µ, the product has no deterioration. After that, it will deteriorate with a 

constant rate θ, 0 < θ < 1. 

During stock out period, the backlogging rate is variable and is dependent on the length of the waiting 

time for next replenishment so that the backlogging rate for negative inventory is		��
�� � �
�%£
&�'�, 

where 	£ is backlogging parameter 0 ≤ £ ≤ 1 and (T- t) is waiting time. 

 

3.   Mathematical Modelling and Analysis 

The rate of change of inventory during positive stock period (0, ��) occur due to demand & resultant 

deterioration rate D� and in shortage period (��, 
) occur due to demand & a fraction of demand is backlogged 

& backlogging rate is 		��
��. Hence the inventory level at any time during 	(0, ��) and during (��, 
)  is 

governed by the   differential equations. 
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( )
( )1

2 ;r

dI t
D I t D

dt
+ = −              10 t t≤ ≤             … (1) 

 
( )

( )
2

;
1

dI t D

dt T t

−
=

+ µ −
              1t t T≤ ≤                                        … (2)         

with boundary condition ( ) ( ) ( )1 2 1 10 at and at 0I t I t t t I t IM t= = = = = . 
  

 

4. Analytical Solution 

Case 1: Inventory level without shortage 

During the period [ ]10,t the inventory depletes due to the deterioration and demand. Hence the inventory 

level at any time during [ ]10,t  is described by differential equation. 

( )
( )1

1 ;
dI t

I t D
dt

+ θ = −    10 t t≤ ≤                      … (3)   

with the boundary conditions ( )1 1 10 atI t t t= = . the solution of equation (3) is 

( )
( )

( )( )( )1£
1 1

£

n b
m t tcA as

I t e
m

−
θ− −  

= −
  θ −   

    … (4) 

Case 2: Inventory level with shortages 

During the interval [ ]1,t T the inventory level depends on demand and a fraction of demand is backlogged.  

The state of inventory during  [ ]1,t T  can be represented by the differential equation. 

( )
( )

2

1 2

;
1

dI t D

dt t t t

−
=

+ µ + −
                      1 1 2t t t t≤ ≤ +             … (5) 
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with the boundary conditions ��
��� � 0	��	� � ��. the solution of equation (5) is 

		��
�� � �������										
µ

*+,- 1 � µ
����� � ��1�µ�� .																																																		… 
6� 
Therefore the total cost per replenishment cycle consists of the following components. 

(1) Inventory holding cost per cycle 

�1� � 2 1
��'3
4 		��
��5� � 2 
6 � 7��	��
��5�'3

4  

�1� � 8 ��
9 � m
£��� (6:;
<�=
£��
'3�'� � :9 �m
£�>�>
� 7;
<�=
£��
'3�'� ?
1 � �� � :9 �m
£�> ��2 A	)) 																																																																			…	
7� 

(2) Backordered cost per cycle 

  �� � ∏� C ���
��5�
'3%'D'3  

									�� � �∏�� 8?E���� � ���2 � µ��F6
1 � µ���FGAH																																									… 
8� 
(3) Lost Sales cost per cycle 

      JK � ∏� C L1 � M
�%µ
'3%'D�'�5�N
'3%'D'3  

									� ∏� *�� � �
µ
log	
1 � µ���.																																																							… 
9� 

(4) Purchase  cost per cycle = (purchase cost per unit)* (order quantity in one cycle) 

P. C	 � 		C ∗ Q 

when t = 0, the level of inventory is maximum and it is denoted by IM = �W � 
	��
0�� then from the 

equation (4) 

�W � �������										9 � m
£� X;:<�=
£�>
'3� � 1Y																																																																… 
10� 
The maximum backordered inventory is obtained at 
 � 
������ then from the equation (6) 
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�� � ���
������ 
�� � Z[\]^_`										

µ
Llog	
 �

�%µ'D�N																																																												… 
11�      
Thus the order size during total time interval [0, T] 

a � �W � ��		          
   now from equation (10) & (11) 

a � �������										9 � m
£� X;:<�=
£�>
'3� � 1Y � �������										
µ

*log	
 11�µ���. 																																									… 
12�	 
 P. C � C ∗		������� 		*b:c_d
£�>
e3���<�=
£� . � 				�					

µ
Llog f �

�%µ'DgN																																								… 
13� 
(5) ijkljmno	pqrs
i. t� � 	u																																																																																																																																 …	
14� 
Therefore the total cost  (TC) per time unit is given by 
��, ��, £� 
TC	
��, ��, £� � 1
������ (xy5;yz#-	{,�� � ��yy|z#-	{,�� � !�{},y5;yz#-	{,�� � �,��+	��+;�	{,��	� ~�y{���;	{,��) 
	i. e. TC	
��, ��, £� � �


'3%'D� (x. � � �. 1. � � �. � � J. K	 � �. �] 

				TC	
��, ��, £� � �

'3%'D� (� � M


<�=
£��D �6:;
<�=
£��
'3�'� � :9 � m
£�>�> � 7;
<�=
£��
'3�'� E
1 � �� �
:9 �m
£�> 'D� G	� �∏�� �Ef'3'D�'DD� � µ'D��
�%µ'D��gG� � ∏� L�� � M

µ
log	
1 � µ���N � C ∗

				������� 		 *b:c_d
£�>
e3���<�=
£� . � 				�					
µ
Llog	
 �

�%µ'D�N																																			                                                          …(15) 

Differentiate the equation (15) with respect  to ��, ��	�#5	£ then we get 

�
&��
�'3 , �
&���'D �#5 �
&���£ . To minimize the total cost 
�
��, ��, £� per unit time, the optimal value of  ��, ��	�#5	£ 

can be obtained by solving the following equations 

           
�
&��
�'3 � 0, �
&���'D � 0	�#5 �
&���£ � 0																																																																	 …	
16� 
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The H-Matrix of the function 
�
��, ��, £�  is defined as 1 � (	
�D&�
�'3D

�D&�
�'3�'D

�D&�
�'3�£�D&�

�'D�'3
�D&�
�'DD

�D&�
�'D�£�D&�

�£�'3
�D&�
�£�'D

�D&�
�£D

	)    provided the 

determinant of principal minor (H-Matrix) of 
�
��, ��, £� is positive definite. i.e.		det
1��  0, det
1��  0,				det
1F�  0,				where 1�, 1�, 1F is the principal minor of the H Matrix. 

5. Conclusion 

In this paper, an EOQ model for instantaneous deteriorating items with controllable deterioration rate 

with selling price and advertisement dependent demand with partial backlogging. This paper considered 

demand as the increasing function of the selling price and advertising parameter. Also shortages is allowed 

and it can be partially backlogged where the backlogging rate is dependent on the time of waiting for the next 

replenishment. It is discussed over the finite planning horizon. The purpose of this study is to present an 

inventory model involving controllable deterioration rate to extend the traditional EOQ model. The product 

with high deterioration rate are always crucial to the retailers business. In real markets, the retailer can reduce 

the deterioration rate of product by making effective capital investment in storehouse equipment. To reduce 

the deterioration rate retailer invested in the PT cost and a solution procedure has presented to determine an 

optimal replenishment cycle, shortages period, order quantity and preservation technology cost such that the 

total inventory cost per unit time has minimized. This model is very practical for the retailers who use the 

preservation technology in their warehouses to control the deterioration rate under other assumptions of this 

model. This model can further be extended by taking more realistic assumptions such as probabilistic demand 

rate. This model is also very useful in retail business segment such as that of fashionable cloths, domestic 

goods and other daily products. 
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Abstract 

The present paper deals with the study of mathematical model for spread of 

technological innovations in companies or industries. Here we show the rate 

at which new innovations are adopted by the company using fractional 

differential equation model. We have found solution in terms of Mittag-

Leffler function. 
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1. Introduction 

 Fractional calculus is three centuries old as the conventional calculus, but it's not that much popular 

among science and engineering community.  In recent years, an increasing interest for the analysis and 

applications of fractional calculus has been investigated extensively. Recently, Nieto [3] obtained very 

important results and he also reported that fractional calculus is more accurate than classical calculus to 

describe the dynamic behaviour of many real-world physical systems including rheology, viscoelasticity, 

electrochemistry, electromagnetism etc.  Also, it provides an excellent instrument for the description of 

memory and hereditary properties of various materials and processes which are neglected in classical integer-

order models. Besides, many important mathematical models are described using fractional calculus  

• Dedicated to Prof. M. A. Pathan on his 75
th

 Birthday. 
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approach. Recently, considerable amount of work has been done in the area of fractional differential equations 

and a large collection of analytical and numerical methods were developed and employed for obtaining the 

solution. 

2. Prerequisites 

Definition : The Mittag-Leffler function[8] with two parameters is defined as,  

 ( )
( ),

0

,
n

n

z
E z

n
α β

α β

∞

=

=
Γ +

∑                                                …(0) 

where ( ), ; 0 , ( ) 0.C Re Reα β α β∈ > >  

Definition : Caputo's definition of fractional derivative is given by  

 ( )
( )

( )

( )
0 10

1
,

n
t

C

t n

f
D f t d

n t

α

α

τ
τ

α τ
− +

=
Γ − −

∫                                               …(2) 

where ,Rα ∈  is order of fractional derivative, 1 {1, 2,3, }n n and n Nα− < ≤ ∈ = … , 

( ) ( ) (.)
n

n

n

d
f f and

dt
τ τ= Γ  is Euler Gamma function defined by 

 ( ) 1

0
.

z x
z x e dx

∞
− −Γ = ∫                …(3) 

 The Laplace transform of the Caputo fractional derivative with respect to time t .  

 

( ){ } ( )

( ) ( )

0 0
0

1
1

0

0 .

C st

t t

n
j k

j

D u t e D u t dt

s F s s f

α α

α α

∞
−

−
− −

=

=

= −

∫

∑

L

            …(4) 

 The inverse Laplace transform requires the Mittag-Leffler function, which is defined as (1). 

 Laplace transform of the Mittag-Leffler function follows as, 

 ( )1

,
0

,sz s
e z E az dz

s a

α β
β α

α β α

−
∞

− − =
−∫              …(5) 

where , , , ( ) 0, ( ) 0,a C Re Reα β α β∈ > > so we have, 

 ( ){ }1

, .
s

x E ax
s a

α γ
β α

α β α

−
− − =

+
L              …(6) 

Definition : Chauhan et al.[5] has obtained the following results, 

 ( )log log log
α α α

⊕ = �E E Em n m n             …(7) 
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    log log log
α α α

=
E E E

m n� (m⨸ )n               …(8)

Definition:   Jumarie[6] has given the following formula  

 ( ), .
d x x

Ln x E Ln x
x c

α

α α α= =∫                           …(9) 

where C denotes a constant such that 0
x

C
> and Ln xα  denotes the inverse function of the Mittag-Leffler 

function.  

3. Mathematical Models 

 It is integrated process of translating real world problem into mathematical problem, which is based 

on mathematical concepts i.e. function, variables, constants, inequality, etc. taken from algebra, geometry, 

calculus and other branches of mathematics.  

 

Innovation Model 

 Here, we are going to discuss about the process of adoption of a new technological innovation by a 

large population of companies or industries.Here we are considering a situation where new technological 

innovations are introduced in large population of companies which is capable of adopting the innovations 

through motivation.We divide the total employees of companies in two exclusive groups viz, susceptibles S

and adoptives A .Susceptibles are those companies who are unaware of new innovations but are capable of 

adopting it through motivation.Adoptives are those companies who have already adopted the new 

innovations. 
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 Here, we are considering both this groups i.e. susceptibles and adoptives as function of time t

because the number of companies in each of these groups changes during the period of investigation.We 

consider the population of total companies or industries during the time of investigation remains constant (let 

N ). 

 Mathematically we can say that,  

 ( ) ( ) ,  0.S t A t N for t+ = >            …(10) 

 The rate of change of adoptives is given by, 

 ,
dA

AS
dt

β=             …(11) 

where β is the rate at which the motivation for the adoption of innovation is provided by contact between A  

and S only. 

 By contact between A   and S as well as by mass communication sources like TV, radio, 

newspaper, etc. 

 In above equation β and 'β are positive constants called the adoption rate due to contact and mass 

communication respectively. 

 We discuss two models and give the formulation of models as given below, 

1. The direct contact (DC). 

2. The mixed contact (MC). 

4. Direct contact model 

 Here the motivation for adoption of new innovation is provided only by contact between A and S . 

 If at 
00,t A= companies have adopted the innovation, then we have initial value problem follows 

from equation (10) and (11), 

 ( ) ,
dA

A N A
dt

β= −              …(12) 

 The solution of (12) is given by, 

 ( )

0

.

1 1

NtN
A t e

n

A

β−

 
 
 

=  
  + −    

            …(13) 
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So, we can interpret from above equation that the adoption process ( )A t′ is maximum when 
2

N
A = . In other 

words, the adoption process accelerates up to the point at which half community has adopted the innovations 

and thereafter the process decelerates. 

5. Fractional Differential Equation for DC Model 

 Here we are motivated to study the fractional differential equation for the direct contact model and 

obtain the solution for the said model.  

 On writing (12) with arbitrary orderα , as,   

 ( ) ,  0 1
d A

A N A where
dt

α

α
β α= − < ≤  …(14) 

 .
d A d A

N dt
A N A

α α
αβ⇒ + =

−∫ ∫ ∫  …(15) 

 On using the (7), the solution of (15) is given by,  

 ( ) 1log log ,
(2 )

E E

N
A N A t dt c

α α

α αβ

α
−− = +

Γ − ∫�  …(16) 

 
1

,
(2 )

I N
CE t dt

N A

α α
α

β

α
− 

⇒ =  − Γ − 
∫  …(17) 

where 0 1α< < and 
1

limlog log .E ex x
αα →

=  

 Initially, when time 0t = we have, 

   0(0)A A= , we get 0

0

A
C

N A
=

−
, i.e.  

 
10

0 (2 )

AA N
E t dt

N A N A

α α
α

β

α
− 

=  
− − Γ − 

∫  …(18) 
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A
N A N

E t dt
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α α
α

β

α

−

−

⇒ =
 −

+  Γ − 
∫

 …(19) 

when 1α → and t → ∞ ,  gives .A N=  
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6. The Mixed Model 

 Here, we consider the situation where no companies have adopted the innovation at  time 0,t = then 

we have following initial value problem, 

 ( ) ( ) ( ) , 0 0.
dA

A N A A
dt

β β ′= + − =  …(20) 

7. Fractional Differential Equation for MC Model 

 Here, we solve the given model in the form of fractional differential equation. 

 ( ) ( ) 0, 0 ,  .
dI

A A A A N
dt

β
β γ γ

β

′ 
= − = = − 

 
 …(21) 

 For developing fractional differential equation model we write (20) as, 

 ( ) ( ) 0, 0 .
d A

A A A A
dt

α

α
β γ= − =  …(22) 

 As shown in the previous model, the solution of this fractional differential equation can also be 

given by  

 ( ) 1log log
(2 )

E EA A t dt c
α α

α αγβ
γ

α
−− = +

Γ − ∫�  …(23) 

 
1

,
(2 )

A
CE t dt

A

α α
α

γβ

γ α
− 

=  
− Γ − 
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where 0 1α< <  and 
1

limlog log .E ex x
αα →

= Initially when time 0,t = we have, 

   
( ) 0
0 ,A A= and further simplification gives 0

0

A
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=

−
. Thus, we arrive at, 
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           …(26) 

when 1α →  and t → ∞  this yields .A N
β

β

′
= −
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8. Conclusion 

 We are interested to obtain the analytical solution of fractional differential equation model for 

spread of technological innovations. This work may be useful for computational study and statistical survey 

purpose.  
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1. Introduction 

Let  1, 2,

1

( ........ ) 0, 1 , 2
n

n n i i

i

P p p p p p n
=

 
Γ = = ≥ = ≥ 

 
∑  be the set of all complete finite 

discrete probability distributions. Jain & Saraswat [10, 11] introduced new f-divergence measure 

given by 

1

( , )
2

n
i i

f i

i i

p q
S P Q q f

q=

 +
=  

 
∑                 …(1.1) 

where ( ): 1 2,f
+

∞ → R
 
is a convex function and  , nP Q ∈Γ  .  
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The new f -divergence is a general class of divergence measures that includes several divergences 

used in measuring the distance between two probability distributions. This class has introduced on 

convex function f , normalized functions f(1)=0 and defined on (1/2, ∞). An important property of 

this divergence is that many known divergences can be obtained from this measure by appropriately 

defining the convex function f .  

Proposition 1.1 Let  : [0, )f ∞ → R  be convex and ,
n

P Q ∈ Γ
 
then we have the following inequality 

     ( )( , ) 1fS P Q f≥          …(1.2) 

Equality holds in (1.2) iff 

    1, 2,..,
i i

p q i n= ∀ =          …(1.3) 

 

Corollary 1.1.1 (Non-negativity of new f-divergence measure) Let  : [0, )f ∞ → R  be convex and 

normalized, i.e.

 
(1) 0f =             …(1.4) 

Then for any ,
n

P Q ∈ Γ from (1.2) of proposition 1.1 and (1.4), we have the inequality 

( , ) 0
f

S P Q ≥                 …(1.5) 

If f is strictly convex, equality holds in (2.5) iff 

     [ ],2,................
i i

p q i i n= ∀ ∈          …(1.6) 

and  

( , ) 0fS P Q ≥   and   ( , ) 0fS P Q =
 
iff P Q=          …(1.7) 

 

Proposition 1.2 Let 
1 2&f f  are two convex functions and 

1 2g a f b f= + then
1 2

( , ) ( , ) ( , )
g f f

S P Q a S P Q b S P Q= + , where &a b  are constants and ,
n

P Q ∈ Γ
 

 

There are some examples of divergence measures in the category of Csiszar’s f-divergence 

divergence measure which can be obtained using new f-divergence measure like as Bhattacharya 

divergence [1], Triangular discrimination [5], Relative J-divergence [7], Hellinger discrimination 

[8], Chi-square divergence [12], Relative Jensen-Shannon divergence [13], Relative arithmetic-
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geometric divergence measure [14], Unified relative Jensen-Shannon and arithmetic-geometric 

divergence measure[14] which are following: 

•  If ( )
2

( ) 1f t t= −   then Chi-square divergence measure is given by  

2
2

1

1 1
( , ) 1 ( , )

4 4

n
i

f

i i

p
S P Q P Q

q
χ

=

 
= − = 

 
∑          … (1.8) 

•  If ( ) logf t t= −   then relative Jensen-Shannon divergence measure is given by  

1

2
( , ) log ( , )

n
i

f i

i i i

q
S P Q q F Q P

p q=

 
= = 

+ 
∑          … (1.9) 

•  If ( ) logf t t t=  then
 
relative arithmetic-geometric divergence measure is given by 

1

( , ) log ( , )
2 2

n
i i i i

f

i i

p q p q
S P Q G Q P

q=

 + + 
= =  

   
∑       … (1.10) 

•  If 
2( 1)

( ) , 0
t

f t t
t

−
= ∀ >   then Triangular discrimination is given by 

( )

2

1

( ) 1
( , ) ( , )

2 2

n
i i

f

i i i

p q
S P Q P Q

p q=

−
= = ∆

+
∑

        

… (1.11) 

•  If ( ) ( 1) logf t t t= −   then Relative J-divergence measure is given by 

1

1
( , ) log ( , )

2 2 2

n
i i i i

f R

i i

p q p q
S P Q J P Q

q=

 − + 
= =  

   
∑       … (1.12) 

•  If ( ) (1 )f t t= −   then Hellinger discrimination is given by 

( , ) 1 , ,
2 2

f

P Q P Q
S P Q B Q h Q

 +  +   
= − =    

    
       …(1.13) 

•  If

[ ]
1

( 1) 1 , 0,1

( ) log 0

log 1

t

f t t if

t t if

αα α α

α

α

−  − − ≠ 
= − =
 =


 

  Then
 
Unified relative Jensen-Shannon and Arithmetic-Geometric divergence measure of type 

α  is given by 
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[ ]
1

1

1

1

( , ) ( 1) 1 , 0,1
2

2
( , ) ( , ) ( , ) log , 0

( , ) log , 1
2 2

n
i i

i

i i

n
i

f i

i i i

n
i i i i

i i

p q
FG Q P q

q

q
S P Q Q P F Q P q

p q

p q p q
G Q P

q

α

α

α

α α α

α

α

−

=

=

=

   +
  = − − ≠ 
    
  

= Ω = = =  
+ 

  + +  = =      


∑

∑

∑

 … (1.14) 

2. New Information Inequalities 

The following theorem concerning inequalities among new f-divergence measure and Relative 

Jensen-Shannon divergence measure. The results are on similar lines to the result presented by Dragomir [6] 

and Jain & Saraswat [9]. 

 

Theorem 2 Let : (0, )f ∞ →R  is normalized mapping i.e. (1) 0f =  and satisfy the assumptions. 

(i) f  is twice differentiable on (r, R), where 0 1r R≤ ≤ ≤ ≤ ∞  

(ii)  there exist constants m, M such that 

2 "( )m t f t M≤ ≤          …(2.1)
 

If P, Q are discrete probability distributions satisfying the assumptions 

{ }
1

, 1,2,...........
2 2

i i

i

i

p q
r r R i n

q

+
< ≤ = ≤ ∀ ∈        …(2.2) 

Then we have the inequality 

( , ) ( , ) ( , )
f

m F Q P S P Q M F Q P≤ ≤          …(2.3) 

Proof: - Define a mapping [ ]: (0, ) , ( ) ( ) logm mF F t f t m t∞ → = − −R . Then (.)
m

F is normalized, twice 

differentiable and since 

'' 2

2 2

1
"( ) ( ) "( ) 0

m

m
F t f t t f t m

t t
 = − = − ≥          …(2.4) 

For all ( , )t r R∈ , it follows that (.)
m

F is convex on ( , )r R . Applying non-negativity property of f-

divergence functional for (.)
m

F
 
and proposition 2.2, we may state that 

( log )0 ( , ) ( , ) ( , ) ( , ) ( , )
mF f t f

S P Q S P Q m S P Q S P Q m F Q P
−

≤ = − = −  

0 ( , ) ( , )
f

S P Q m F Q P⇒ ≤ −      …(2.5) 

From where the first inequality of (3.3) 
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Now we again Define a mapping [ ]: (0, ) , ( ) log ( )M MF F t M t f t∞ → = − −R , which is obviously 

normalized, twice differentiable and by (3.1), convex on ( , )r R . Applying non-negativity property of f-

divergence measure for (.)
M

F
 
and the linearity property, we obtain the second part of (3.3) i.e. 

0 ( , ) ( , )
f

M F Q P S P Q≤ −          …(2.6) 

From results (2.5) and (2.6) give result (2.3) 

Remark.1 If we have strict inequality “>” in (2.3) for any ( , )t r R∈ then the mapping (.)
m

F and (.)
M

F are 

strictly convex and equality holds in (2.3) iff  P Q=  

Remark.2 It is important note that f is twice differentiable on 

(0, )∞ and
2 "( ) , (0, )m t f t M t≤ ≤ < ∞ ∀ ∈ ∞ , then inequality (2.1) holds for any probability distributions P 

and Q. 

 

3. Some Particular Cases 

 

In this section we established bounds of particular well known divergence measures in terms 

of Relative Jensen-Shannon divergence and Jensen-Shannon divergence measure using inequality of 

(2.3) of Theorem 2 which may be interested in Information Theory and Statistics. 

The results are on similar lines to the result presented by Dragomir [6] and Jain & Saraswat 

[10]. 

Proposition 3.1:-Let ,
n

P Q ∈ Γ  be two probability distributions satisfying (3.2) then we have the 

following inequalities  

    2 2 21
( , ) ( , ) ( , )

8
r F Q P P Q R F Q Pχ≤ ≤

          
…(3.1) 

2 21
( , ) ( , ) ( , )

16
r I P Q P Q R I P Q≤ Ψ ≤  

        
…(3.2) 

Proof:-Consider the mapping : ( , )f r R →R .  

( ) ( )
2

( ) 1 , '( ) 2 1 , ''( ) 2 0, 0f t t f t t f t t= − = − = > ∀ >  

"( ) 0f t > and   (1) 0f =  , So function f   is convex and normalized.  

Define     ( )2 2 2( ) ''( ) 2 2g t t f t t t= = =  
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Then obviously  

2 2

[ , ][ , ]

sup ( ) 2 , inf ( ) 2
t r Rt r R

M g t R m g t r
∈∈

= = = =          …(3.3) 

Since 21
( , ) ( , )

4
fS P Q P Qχ= from (2.8) 

From equation (2.8), (3.3) & (3.3) prove of the result (3.1)  

Now Interchange P Q→  we have 

2 2 21
( , ) ( , ) ( , )

8
r F P Q Q P R F P Qχ≤ ≤      

(3.4) adding inequalities (3.1) & (3.4) prove of the result (3.2). 

Proposition 3.2:-Let , nP Q ∈ Γ  be two probability distributions satisfying (3.2)

 

then we have the 

following inequalities 

 
    ( , ) ( , ) ( , )r F P Q G P Q R F P Q≤ ≤

        
…(3.5) 

( , ) ( , ) ( , )r I P Q T P Q R I P Q≤ ≤          …(3.6) 

Proof:-Consider the mapping : ( , )f r R →R .  

1
( ) log , '( ) 1 log , ''( ) 0, 0f t t t f t t f t t

t
= = + = > ∀ >  

"( ) 0f t ≥ and   (1) 0f =  , So function f   is convex and normalized.  

Define     2 2 1
( ) ''( )g t t f t t t

t

 
= = = 

 
 

Then obviously      

[ , ] [ , ]

inf ( ) , sup ( )
t r R t r R

M g t R m g t r
∈ ∈

= = = =          …(3.7) 

Also ( , ) ( , )
f

S P Q G Q P=   from (2.10) 

From equation (2.10), (3.3) & (3.7)  

( , ) ( , ) ( , )r F Q P G Q P R F Q P≤ ≤         …(3.8) 

Interchange P Q→  of (3.8) prove of the result (3.5)  

Adding inequalities (3.5) & (3.8) prove of the result (3.6). 
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Proposition 3.3:-Let , nP Q ∈ Γ  be two probability distributions satisfying (3.2) then we have the 

following inequalities 

 

   
1

(1 ) ( , ) ( , ) (1 ) ( , )
2

Rr F Q P J P Q R F Q P+ ≤ ≤ +         …(3.9) 

1
(1 ) ( , ) ( , ) (1 ) ( , )

4
r I P Q J P Q R I P Q+ ≤ ≤ +    

     
… (3.10) 

Proof:-Consider the mapping : ( , )f r R →R .  

( )
2

11
( ) ( 1) log , '( ) 1 log , ''( ) 0, 0

t
f t t t f t t f t t

t t

+ 
= − = − + = > ∀ > 

 
 

"( ) 0f t ≥ and   (1) 0f =  , So function f   is convex and normalized.  

Define   2 2

2

1
( ) ''( ) (1 )

t
g t t f t t t

t

+ 
= = = + 

 
 

Then obviously  

( ) ( )
[ , ][ , ]

sup ( ) 1 , inf ( ) 1
t r Rt r R

M g t R m g t r
∈∈

= = + = = +      …(3.11) 

Since  
1

( , ) ( , )
2

f R
S P Q J P Q=  from (2.12) 

From equation (2.12), (3.3) & (3.11) give the result (3.9). 

Now Interchange P Q→  then we have 

1
(1 ) ( , ) ( , ) (1 ) ( , )

2
Rr F P Q J Q P R F P Q+ ≤ ≤ +     … (3.12) 

Adding inequalities (3.9) & (3.12) prove of the result (3.10).
 

 

Proposition 3.4:-Let , nP Q ∈ Γ  be two probability distributions satisfying (3.2)

 

then we have the 

following inequalities 

 

    
1 1 1

( , ) ( , ) ( , )
4

F P Q P Q F P Q
R r

≤ ∆ ≤
    

… (3.13) 

1 1 1
( , ) ( , ) ( , )

4
I P Q P Q I P Q

R r
≤ ∆ ≤

     
… (3.14)

 

Proof:-Consider the mapping : ( , )f r R →R .  
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2( 1) 1
( ) 2

t
f t t

t t

−  
= = + − 

 
 , 

2

1
'( ) 1f t

t

 
= − 
 

 , 
3

2
"( )f t

t
=  

"( ) 0f t ≥ and   (1) 0f =  , So function f   is convex and normalized.  

Define 2 2

3

2 2
( ) ''( )g t t f t t

t t

 
= = = 

 
 

Then obviously  

    
[ , ][ , ]

2 2
sup ( ) , inf ( )

t r Rt r R

M g t m g t
r R∈∈

= = = =      … (3.15) 

Since 
1

( , ) ( , )
2

f
S P Q P Q= ∆

  
from (2.11)

  

From equation (2.11), (3.3) & (3.8)  

1 1 1
( , ) ( , ) ( , )

4
F Q P P Q F Q P

R r
≤ ∆ ≤    

   
… (3.16) 

Now interchange P Q→  of (3.16) then give the result (3.13). 

Adding inequalities (3.13) & (3.16) prove of the result (3.13).  

Proposition 3.5:-Let ,
n

P Q ∈ Γ   be two probability distributions satisfying (3.2) then we have the 

following inequality  

    ( , ) ( , ) ( , )r F P Q P Q R F P Q
α α

α≤ Ω ≤
    

… (3.17) 

 
Proof:-Consider the mapping : ( , )f r R →R .  

[ ] [ ]
1 1 1 2( ) ( 1) 1 , 0&1, '( ) 1 , ''( ) 0, 0f t t f t t f t t tα α αα α α α

− − − − = − − ≠ = − = > ∀ >   

"( ) 0f t ≥ and   (1) 0f =  , So function f   is convex and normalized.  

Define 2( ) ''( )g t t f t t
α= =  

Then obviously  

[ , ][ , ]

sup ( ) , inf ( )
t r Rt r R

M g t R m g t rα α

∈∈

= = = =   … (3.18) 

Since  ( , ) ( , )
f

S P Q Q Pα= Ω  from (2.13) 

From equation (2.13), (3.3) & (3.18) 

( , ) ( , ) ( , )r F Q P Q P R F Q P
α α

α≤ Ω ≤     … (3.19) 

Interchange P Q→  and proved of the result (3.17) 
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Corollary 3.5.1:-For
1

2
α =  and Let ,

n
P Q ∈ Γ  be two probability distribution satisfying (3.2) then 

we have the following inequalities  

   ( , ) 1 , ( , )
4 2 4

r P Q R
F P Q B P F P Q

 +  
≤ − ≤  

         
…(3.20)

 

 and    ( , ) , ( , )
4 2 4

r P Q R
F P Q h P F P Q

+ 
≤ ≤ 

          

… (3.21) 

Proof: - Consider the mapping : ( , )f r R →R . If 
1

2
α =  of equation (3.17) 

1 1 3

2 2 2( ) 4(1 ), '( ) 2 , ''( ) 0, 0f t t f t t f t t t
− −

= − = − = > ∀ >  

"( ) 0f t ≥ and   (1) 0f =  , So function f   is convex and normalized. 

Define  
2

( ) ''( )g t t f t t= =  

Then obviously  

[ , ][ , ]

sup ( ) , inf ( )
t r Rt r R

M g t R m g t r
∈∈

= = = =       … (3.22)      

Since ( , ) 4 1 , 4 ,
2 2

f

P Q P Q
S P Q B P h P

 +  +   
= − =    

    
 from (2.13) (3.23)  

From equation (2.13), (3.3) & (3.22) & (3.23) give the results (3.20) & (3.21). 

Corollary 3.5.2 - The results for 0&1α = of result (3.17) are already proved in results (3.1) and 

(3.2). 

4. Resistor-Average Distance 

 

 We use the Resistor-Average distance as a measure of dissimilarity between two probability 

densities it is defined as 

1
1 1( , ) ( , ) ( , )

RAD
D P Q F P Q F P Q

−
− − = +   

Relative Jensen-Shannon divergence measure from which is derived, it is non-negative and equal to 

zero iff p(x) ≡ q(x), but unlike it, it is symmetric. Another important property of the Resistor-

Average distance is that when two classes of patterns 
p

C and
q

C  are distributed according to, 

respectively, p(x) and q(x), it is instructive to consider two special cases: when divergences in both 



48 ]  GANITA  SANDESH,  Vol. 29, No. (1 & 2 ) 2015 

 

directions between two pdfs are approximately equal and when one of them is much greater than the 

other: 

* ( , ) ( , )F FD P Q D P Q D≈ ≈  

( , )RADD P Q D≈  

* ( , ) ( , )F FD P Q D P Q D≈ ≈  

  ( , ) ( , ) ( , ) ( , )
F F F F

D P Q D Q P or D P Q D Q P≈ ≈  

( , ) min ( , ) ( , )
RAD F F

D P Q D P Q or D Q P≈  
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Abstract 

 

In the present paper we first evaluate a basic finite integral involving the 

products of the generalized Legendre’s associated function 
βα

γ
,

P  and the 

H -function. Further we evaluate two more general integrals involving the 

products of 
βα

γ
,

P , the multivariable polynomials S
s

s

mm
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,...,

,...,

1

1

 and the H -

function. All the evaluated integrals are believed to be new and reduce to a 

large number of simple integrals lying scattered in the literature. We mention 

two special cases of the second integral, which are also new and of interest 

by themselves. A known integral given by Anandani also follows as special 

case of the first main integral. 
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1. Introduction 

 

 In this paper, we shall define and represent the H -function in the following manner [2] 

 [ ]











≡

+

+

QMjjjMjj

PNjjNjjjNM

QP

NM

QP Bbb

aAa
zz HH

,1,1

,1,1,

,

,

, );,(,),(

),(,);,(

ββ

αα
  ∫=

L
dz

i
ξξφ

π
ξ)(

2

1
 …(1.1) 

where 

           

∏∏

∏ ∏

+=+=

= =

−Γ+−Γ

+−Γ−Γ

=
p

Nj

jj

Q

Mj

B

jj

M

j

N

j

A

jjjj

ab

ab

j

j

11

1 1

)()}1({

)}1({)(

)(

ξαξβ

ξαξβ

ξφ      … (1.2) 

 The nature of contour L, the convergence conditions of the integral given by (1.1), its special cases and 

other details of the H -function can be referred in the paper by Gupta and Soni [6]. 

 Also, the generalized polynomials [ ]sxxS
mm

nn
s

s

L1

,...,

,...,

1

1

 occurring here in will be defined and represented 

in the following form which differs slightly from that given by Srivastava [12,p.185,eqn.(7)] 
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         where iii msimn ],,...,1[0,...;2,1,0 =≠= is an arbitrary positive integer and the coefficients 

[ ]ss knknA ,;;, 11 L are arbitrary constants, real or complex. 

 If we take 1=s in the equation (1.3) the generalized polynomials [ ]sxxS
mm

nn
s

s

L1

,...,

,...,

1

1

 reduces to the 

well known general class of polynomials [ ]xS
m

n
introduced by Srivastava [13, p.1, eqn. (1)]. 

 Finally, the generalized Legendre’s associated function ( )xP
βα

γ
,

[10,p.560,eqn.(3);5,p.81,eqn.(1.1)] 

occurring in this paper will be defined and represented as follows: 
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 where β  andγ are unrestricted and α  is not a positive integer . Further details about this function 

including its particular cases can be found in the papers of Kuipers et al. and Kuipers [8, 9]. 

2.  Main Integrals 
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The integral (2.1) is valid under the following conditions : 

(i) α  is not a positive integer, .0,0 ≥≥ vu  

(ii) ( )[ ] 0/Remin)Re(
1

>+
≤≤

jj
Mj

bu βρ , 

     ( )[ ] 0/Remin)Re(
1

2
>+−

≤≤
jj

Mj
bv βσ α . 

Second integral: 

[ ]∫ −
















−

−

+− −−−
1 1

,...,

,...,

,211
)1(

)1(

)1(

)()1()1(

11

1

1

o

vu

vu
s

vu

dxxxzH

xxe

xxe

xPxxx

ss

s

s
S

mm

nn
M

βα
γ

βσρ
 



54 ]   GANITA  SANDESH,  Vol. 29, No. (1 & 2 ) 2015 

[ ]∑ ∏∑ ∑
∞

= =










=










= +−Γ

−
−−+

−
−













 −
=

0 10 0

11
)1(!2

)
2

()1
2

(

!

)(
,;;,

1

1

1t
t

tts

j j

k

jkmj
m

n

k

m

n

k

ss
ttk

en
knknA

j

jj

s

s

s
α

βα
γ

βα
γ

LL  



















++−−+−−+−−

−−−−+−−−−−

+

+
+
++

)1;,)()(
2

1(,);,(,),(

),(,);,(),1;,
2

1(),1;,1(

111,1,1

,1,11111
2,
1,2

vukvukvutBbb

aAavkvkvtukuku

zH

sssQMjjjMjj

PNjjNjjjssss
NM

QP

L

LL

α
σρββ

αα
α

σρ

…(2.2) 

The integral (2.2) is valid under the following conditions : 

(i) α  is not a positive integer, 0,0 ≥≥ vu ; 0,0 ≥≥ jj vu ,  j=1,…,s. 
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The integral (2.3) is valid under the following conditions : 

(i) α  is not a positive integer, 0,0 ≥≥ vu ; 0,0 ≥≥ jj vu , j=1,…,s.      
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Proofs:  

To establish the integral (2.1), we first express the generalized Legendre’s associated function 

occurring in its left hand side in terms of 12 F  with the help of (1.4) and the H -function in terms of Mellin-

Barnes contour integral by (1.1), Now we interchange the order of x  and ξ  integrals (which is permissible 

under the conditions stated with (2.1)) in the result thus obtained and get after a little simplification the left 

hand side of (2.1) (say ∆ ) as 
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on evaluating the x -integral occurring on the right hand side of (2.4) with the help of a known result [11,p. 

60,eqn.(2.16(ii))] and expressing the function 23 F so obtained in terms of series and interchanging the order of 

summations and integrations (which is permissible under the conditions stated with(2.1)),the equation (2.4) 

takes the following form after a little simplification 
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Finally, on reinterpreting the multiple Mellin-Barnes contour integral occurring in the right hand side 

of (2.5) in terms of the H -function, we easily arrive at the desired result (2.1). 
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 To prove (2.2), we first express the generalized polynomials [ ]sxxS
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left hand side of (2.2) in series form with the help of (1.3) and then interchange the order of summations and 

integration (which is permissible under the conditions stated with (2.2)).Now on evaluating the integral so 

obtained with the help of the integral (2.1), we easily obtain the desired result (2.2). 

 To evaluate the integral (2.3), we make use of the following integral 
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where α  is not a positive integer, 0)
2
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σ  and proceed in a manner similar to 

that given earlier in proofs of (2.1)and (2.2). 

3. Special Cases 
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eqn.(1.8)]. We arrive at the following integral after a little simplification 
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The conditions of existence of (3.1) can be easily obtained with the help of the conditions stated with 

(2.2). 

(ii) Now we give an interesting special case of (2.2) involving g function connected with a certain class of 

Feymman integrals [6, p. 98, eq.(1.3)] 
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where )2/(/2 2/1
dK

dd
d Γ≡ − π [7,p.4121,,eq.(1.5)] and conditions easily obtainable from (2.2) are 

satisfied. 

(iii) If we take jA (j=1,…,N)= jB (j=M+1,…Q)=1in(2.1),the H -function occurring there in reduces to the 

Fox H-function[3,14] and we get an integral given by Anandani [1  ,p.343,eqn.(2.2)] 
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Abstract  

The purpose of this study is to reflect the real life situation effect of inflation 

in EOQ models. It is assumed that the rate of deterioration is time dependent 

and two parameter Weibull   function. The demand is stock and selling price 

dependent. Holding cost is constant what this paper presents. The demand is 

partially backlogged and proposed model considered allows shortages. We 

solved this model by maximizing the total inventory profit. The result is 

illustrated with the help of numerical examples. The effect of changes in 

various parameters used in model on the optimum solution is shown by using 

sensitivity analysis. We can use the model in optimizing the total inventory 

profit for business enterprises. 

Keywords: EOQ, Weibull deterioration, Stock depended demand, holding cost inflation. 

1. Introduction 

We can see in the markets that demand for a certain product can increase or decrease according to its 

availability. More is the product, huge is the demand. As it attracts the customers to buy it. Also if that 

product is less available then the customers think that product is not so popular it has become old. For many 

years, researchers and practitioners have come to know that the demand for certain products can be depending 

upon its inventory level on display. Gupta and Vrat (1986) were the first who developed models for stock 
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dependent consumption rate. Baker and Urban (1988) established an economic order quantity model for a 

power form inventory-level-dependent demand pattern. Mandal and Phaujdar (1989) introduced an 

economic production quantity model for deteriorating items with constant production rate linearly stock-

dependent demand. Researchers like Pal et al. (1993), Giri et.al (1996), Ray et al. (1998), Uthaya Kumar 

and Parvathi (2006), Roy and Choudhuri (2008), Choudhury et al. (2013) and many others worked on it. 

Soni and Shah (2008) introduced the optimal ordering policy for an inventory model with stock dependent 

demand. Wu et. Al (2006) was the first who developed an inventory model for non-instantaneous 

deteriorating items with stock-dependent demand. Chang et al. (2010) established an optimal replenishment 

policy for non-instantaneous deteriorating items with stock- dependent demand.Sana (2010) established an 

EOQ model for perishable items with stock-dependent demand;Gupta et al. (2013) introduced optimal 

ordering policy for stock-dependent demand inventory model with non-instantaneous deteriorating 

items.Vipin Kumar, S. R. Singh, &Dhir Singh (2011) was developed an Inventory Model For Deteriorating 

Items With Permissible Delay In Payment Under Two-Stage Interest Payable Criterion And Quadratic 

Demand”Mishra and Tripathy (2012) gave an idea on an inventory model for time dependent Weibull 

deterioration with partial backlogging,Vipin Kumar, GopalPathak, C.B.Gupta (2013) derived  a 

Deterministic Inventory Model for Deteriorating Items with Selling Price Dependent Demand and Parabolic 

Time Varying Holding Cost under Trade Credit”Palanivel and Uthayakumar (2014) established model for 

non-instantaneousdeterioratingproducts with time dependent two variable Weibull deterioration rate, where 

demand rateis power function of time and permitting partial backlogging.Vipin Kumar, Anupama Sharma, 

C.B.Gupta (2014)established an EOQ Model For Time Dependent Demand and Parabolic Holding Cost With 

Preservation Technology Under Partial Backlogging For Deteriorating Items. Farughi et al. (2014) modeled 

pricing and inventory control policy for non-instantaneous deteriorating items with price and time dependent 

demand permitting shortages with partial backlogging. Vipin Kumar, Anupma Sharma , C.B.Gupta (2015) 

worked on two-Warehouse Partial Backlogging Inventory Model For Deteriorating Items With Ramp Type 

Demand” .While, Zhang et al. (2015) developedpricing model for non-instantaneous deteriorating item by 

considering constant deterioration rate andstock sensitive demand. Further,Vipin Kumar, Anupama 

Sharma, C.B.Gupta (2015) “A Deterministic Inventory Model For Weibull Deteriorating Items with Selling 

Price Dependent Demand And Parabolic Time Varying Holding CostGopalPathak, Vipin Kumar, 

C.B.Gupta (2017) A Cost Minimization Inventory Model for Deteriorating Products and Partial Backlogging 

under Inflationary Environment . AditiKhanna, Aakanksha Kishore and Chandra K. Jaggi (2017) 

Strategic production modeling for defective items with imperfect inspection process,rework, and sales return 

under two-level trade credit GopalPathak, Vipin Kumar, C.B.Gupta (2017)developed An Inventory Model 

for Deterioration Items with Imperfect Production and Price Sensitive Demand under Partial Backlogging, 
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Mashud et al. (2018) worked on non-instantaneous deteriorating item having different demand rates allowing 

partial backlogging. 

In this paper, we have developed an inventory model for deteriorating items with partial backlogging 

under stock and price dependent demand. The presented model is developed with the effect of inflation. The 

concavity is also shown through the figure made by Mathematica-11 software. Numerical example is taken to 

test the validity, analytically and graphically. In last section sensitivity analysis is mentioned.  

The rest paper is organized as follows section second in two subparts, the first part explain the 

assumptions and second part show the notations used throughout the study. In section II the analytical 

calculation of model is shown along with different costs and sales revenue. Next section provides the 

numerical illustration of the problem with a fig. to show the convexity. In section IV, we discussed the 

sensitivity and observations. In last section gives conclusions of the problem.        

2. Assumption and Notations 

 

This inventory model is developed on the basis of the following assumption and notations 

 

2.1 Assumptions 

i. Deterioration rate which follows a two parameter Weibull distribution, ( ) 1
  t t

βθ αβ −= , where0 �

� ≪ 1 is the scale parameter, β > 0 is the shape parameter and 1)(0 <<≤ tθ . 

ii. Demand rate is function of selling price and stock considered as 

( )( )
( ) , 0

              ,
,

a bI t s t v

a s v t
t

T
D I s


=

+ − ≤ ≤

− ≤ ≤



where ,a b are demand parameters and s  is selling price. 

also 0,a > 0 1b< << and a s>  

iii. Holding cost is constant as ( )h t h= where 0h >  

iv. Replenishment rate is instantaneous 

v. Lead time is zero 

vi. The planning horizon is finite  

vii. During the stock out period, the unsatisfied demand is backlogged; the rate of backlogging is variable 

and is dependent on the length of the waiting time for the next replenishment. For the negative 

inventory the backlogging rate is ( )
( )
1

1
B T t

T tδ
− =

+ −
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2.2 Notations 

i. A : Ordering cost. 

ii. p :Purchasing cost 

iii. s  : Unit selling price  

iv. C : Shortage cost per unit per unit time. 

v. l : Lost sale cost per unit. 

vi. 1Q :  Maximum inventory level during (0, T). 

vii. 2Q : Maximum inventory level during the shortage period. 

viii. Q the retailer’s order quantity   

ix. v : the time at which the inventory level falls to zero (decision variable)  

x. T : inventory cycle length (decision variable) 

xi. ( )1I t : Inventory level at any time during (0, v ). 

xii. ( )2I t : Inventory level at any time during ( v , T). 

xiii. ( , )TC v T the retailer total cost optimal value   

 

3 Mathematical Formulation and solution 
 

 In this section the behavior of the inventory system as shown in fig. 1 as the inventory level decreases 

due to demand and deterioration in the interval [ ]0,v and at the time v inventory level reaches zero and the 

shortages starts during the interval [ ],v t which is under the partial backlogging effect.  
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Inventory Level 

 

 

 

    On hand Inventory                                                                                                                                   Order        

                                                                                                                                                                         Quantity  

 

O      Back orders                                                       v                                        T Time 

                                                                                                                                       Lost sales  

Fig. 1 The graphical representation for the inventory system 

 

The instantaneous state of the system is given by 

( )
( ) ( ) ( )( )1

1 ,
dI t

t I t D I t s
dt

θ= − −     0 vt≤ ≤    ….(1) 

( )
( ) ( )( )1

,
dI t

B T t D I t s
dt

= − −     v t T≤ ≤    ….(2) 

With boundary conditions    
( ) ( )1 20vI vI= =

 

The solution of above differential equation are 

( ) ( ) ( ) ( )2 2 1 1 2 1

1 ( ) ( ) ( )
2 1

b
I t a s t v t v t b tv t vt tv

β β β βα
α

β
+ + + 

= − − + − + − − − − − + 
0 vt≤ ≤  ….(3) 

( ) ( )( ) ( )( )2

( )
log 1 log 1

a s
I t T t T vδ δ

δ

−
 = + − − + −  v t T≤ ≤  ….(4) 

The maximum positive inventory is  

 

( ) 2 1

1 1
0 ( )

2 1

b
Q I a s v v v

βα

β
+ 

= = − + + +    

  ….(5) 

The maximum backordered units are 
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( ) [ ]2 2

( )
log 1 ( )

a s
Q I T T vδ

δ

−
= − = + −

 
  ….(6) 

Hence, order size during the time interval [ ]0,T  

1 2Q Q Q= + [ ]2 1 1
( ) log 1 ( )

2 1

b
a s v v v T v

βα
δ

β δ
+ 

= − + + + + − 
+                             

….(7) 

The total per cycle consists of the following components.   

Ordering cost: Ordering cost per cycle is OC A=               ….(8) 

Holding cost: Holding cost during the interval [ ]0,v  

( )1

0

v

Rt
HC h I t e dt

−= ∫ ( )
( )( )

2 3 3 2

2 6 6 1 2

v bv Rv v
h a s

βαβ

β β

+ 
+ − + 

+ +  
= −

                           

….(9) 

Shortage cost : The shortage cost during the interval[ ],v T  

( )2 2

T

Rt

v

SC c I t e dt
−= −∫

 

( )
( )

( )
2 2

2 2

3 1
log 1

4 2 4 2 2

R v TRT RTv Rv R RT
c a s T v T v δ

δ δ δ

 − − 
 = − − − − + + + + + + −    

  
….(10) 

Lost sales cost: The lost sale cost during the interval[ ]1,t T
 

( )( ) ( )3 1

T

Rt

v

LSC c B T t D t e dt
−= − −∫  

( ) ( )
( )

2 2

2
log)

1
1

2
(

R v T R v T R RT
l a s T v T v δ

δ δ δ

− − −   − + + + + + −   
−

 

=


                   

….(11) 

Purchase cost: The purchasing costper cycle is 

PC pQ= ( )2 1 log 1 ( )
( )

2 1

RT
T vbv v

p a s v e
β δα

β δ

+
−+ − 

= − + + + 
+                                   

….(12) 
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Sales revenue cost: The sales revenue is given by   ( ) ( )
0

v T

Rt Rt

v

SR s D t e dt D t e dt
− −

 
= + 

 
∫ ∫  

( )

( )

( )
( ) ( )( )

( ) ( )( )

2 2

2

1

2

12 1 2 31
12 4 4

24 1 2 3

T v T v R

s a s
v Rv

v bv Rv bv Rv

βαβ β β

β β β

 
− − − 

 
= −    + − +

 + + − + − −  
   + + +   

….(13) 

Therefore the total profit per unit items is given by  

( ) { }
1

,P s v SR OC HC BC LSC PC
T

= − − − − −  

( ) ( )

( )

( )
( ) ( )( )

( )( )( )

2 2

2

1

2

12 1 2 31
12 4 4

2

1
,

4 1 2 3

T v T v R

s a sP
v Rv

v bv Rv bv

s
T

Rv

v βαβ β β

β β β

 
− − − 

 
−    + − +

 + + − + − −  
   + + +   

=

                             

1
A

T
− ( )

( )( )

2 3 3 2

2 6 6 1 2

1 v bv
h a s

Rv

T

v βαβ

β β

+ 
− + − + 

+ +
−

       

( )
( )

[ ]
2 2

2 2

3 1
log 1

4 2 4 2 2

1 R v TRT RTv Rv R RT
c a s T

T
v T vδ δ

δ δ δ

 − − 
+ − − − + + + + + + −  

     

( ) ( )
[ ]

2 2

2

1
log 1

2

1
( )

R v T R v
l a

T R RT
T v T vs

T
δ δ

δ δ δ

 − −  − − + + + + + −  

−



−


 

( )2 1 log 1 ( )1
( )

2 1

RT
T vbv v

p a s v e
T

β δα

β δ

+
−

 + −
− + + + 

+ 
−

                                                               

….(14) 

Our main objective is to maximize the Total profit function ( ),P s v  the necessary condition for 

maximize the total inventory profit are 
( ),

0
P s v

s

∂
=

∂
and 

( ),
0

P s v

v

∂
=

∂                                           
….(15) 

Using the software Mathematica 11, we can calculate the optimal value of s* and v* by equation 

(15).And the optimal value of the total Inventory cost is determined by equation (14). Theoptimal value of 
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s*and v*, satisfy the sufficient conditions for maximizing the total inventory profit function
( )2

2

,
0

P s v

s

∂
<

∂
,

( )2

2

,
0

P s v

v

∂
<

∂
and 

( ) ( ) ( )2 2 2

2 2

, , ,
0

P s v P s v P s v

s v s v

    ∂ ∂ ∂
− >        ∂ ∂ ∂ ∂    

 

In addition, at  *s s= and *v v=  optimal value is ( ) ( ), * *, *P s v P s v=  

4. Numerical Example  

Considerthe followingnumerical values of parameters to illustrate the profit function 0.3,α =

6,β = 25,h = 500,A = 22,a = 30,b = 0.04,δ = 10,p = 40,c = 50,l = 0.06,R = 3T = Use 

Mathematica-11to obtain the optimal solution for v and s Based on the above numerical values of 

used parameters the optimal solution is * 19.519s = * 1.521v =
* *( , ) 35493.68P s v =  

 

Fig.2 ( , )P s v v/s s  and v  

From fig. 2, observed that the total cost function is a strictly concave function. Thus, 

theoptimum values of s and v can be obtained with the help of the average net profit function of the 

model provided that the total profit per unit time of the inventory system is maximum. 
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5. Sensitivity Analysis 

 

In this section, the effects of studying the changes in the optimal value of total profit cost per 

unit time and the optimal value of order quantity per cycle with respect to changes in parameters are 

discussed. Based on example, the sensitivity analysis is performed bychanging the value of each of 

the parameters by 25%± and 50%± , taking one parameter at a time and keeping the remaining 

parameters unchanged. 

 

                  Table 1 

Parameter % Value Total Profit 

 

Alfa 

50% 0.45 7658.08 

25% 0.375 7664.07 

0 0.3 7670.05 

-25% 0.225 7676.03 

-50% 0.15 7682.02 
 

 

Table 2 

Parameter % Value Total Profit 

 

Βeta 

50% 9 7631.05 

25% 7.5 7655.56 

0 6 7670.05 

-25% 4.5 7683.87 

-50% 3 7683.87 
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Table 3 

Parameter % Value Total Profit 

 

H 

50% 37.5 7471.55 

25% 31.25 7570.8 

0 25 7670.05 

-25% 18.75 7769.3 

-50% 12.5 7868.55 

 

Table 4 

Parameter % Value Total Profit 

 

 

A 

50% 750  

25% 625  

0 500 7670.05 

-25% 375  

-50% 250  

 

 

 

Table 5 

Parameter % Value Total Profit 

 

 

A 

50% 33 41676.7 

25% 27.5 24673.5 

0 22 7670.05 

-25% 16.5 9333.29 

-50% 11 26336.6 
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Table 6 

Parameter % Value Total Profit 

 

 

B 

50% 45 17779.5 

25% 37.5 12204.4 

0 30 7670.05 

-25% 22.5 4176.36 

-50% 15 1725.38 

 
 

 

Table 7 

Parameter % Value Total Profit 

 

Delta 

50% 0.6 7670.3 

25% 0.5 7670.18 

0 0.4 7670.05 

-25% 0.3 7669.92 

-50% 0.2 7669.79 

 

 

 

Table 8 

Parameter % Value Total Profit 

 

 

P 

50% 15 7537.19 

25% 12.5 7603.62 

0 10 7670.05 

-25% 7.5 7736.5 

-50% 5 7802.91 
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Table 9 

Parameter % Value Total Profit 

 

 

C 

50% 60 7655.26 

25% 50 7662.66 

0 40 7670.05 

-25% 30 7677.44 

-50% 20 7684.84 

 
 

 

 

 

Table 10 

Parameter % Value Total Profit 

 

 

L 

50% 45 7669.59 

25% 37.5 7669.82 

0 30 7670.05 

-25% 22.5 7670.28 

-50% 15 7670.51 
 

 

 

 

Table 11 

Parameter % Value Total Profit 

 

R 

50% 0.09 7597.84 

25% 0.075 7634.02 

0 0.06 7670.05 

-25% 0.045 7705.36 

-50% 0.03 7740.1 
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Table 12 

Parameter % Value Total Profit 

 

T 

50% 4.5 5074.5 

25% 3.75 6117.43 

0 3 7670.05 

-25% 2.25 10239.1 

-50% 1.5 15344.2 

 

 

6. Observations 

Fromtables (1-12), the following facts are apparent  

ii. With increment of ,a b and δ , the total profit ( ),P s v  shows increasing behavior 

iii. If ,α ,β ,h ,A ,p ,c ,l ,R andT  are increases then the total profit function ( ),P s v  

decreases.  

7. Conclusion  

 

In the above study an inventory model has been proposed in which demand rate is considered to 

be a function of price and stock where deterioration rate has been considered to follow two parameter 

Weibull function. The model has been applied to optimize the totalprofit for the business enterprises 

where demand is stock and price dependent and shortages are partially backlogged. The model is solved 

analytically by maximize the profit. Finally, the proposed model has been verified by the numerical and 

graphical analysis. This model can further be extended by taking more realistic assumptions such as 

probabilistic demand rate, other functions of holding costs, non-zero lead time etc. 
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Abstract 

The decision taken at the beginning i.e. in stage 0 is called the initial 

decision, whereas decisions taken in succeeding stages are called recourse 

decisions. In multi-objective, multi-level optimization problems, there often 

exist conflicts (contradictions) between the different objectives to be 

optimized simultaneously. Two objective functions are said to be in conflict if 

the full satisfaction of one, results in only partial satisfaction of the other. 

Multistage decision making under uncertainty involves making optimal 

decisions for a T-stage horizon before uncertain events (random parameters) 

are revealed while trying to protect against unfavorable outcomes that could 

be observed in the future. 

The prime objective of this research work is to present some contributions 

for constructing general Multi-stage Stochastic multi-criteria Decision 

making models. With the help of Numerical problems and LINGO software 

(can solve linear, nonlinear and integer multistage stochastic programming 

problems), we tried to prove that Recourse decisions provide latitude for 

obtaining improved overall solutions by realigning the initial decision with 

possible realizations of uncertainties in the best possible way as compare 

with the heuristic model for the decision making. 

 

Keywords: Recourse decision, Multi-criteria dynamic decision making, optimization, decision tree, LINGO 
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1. Introduction 

Decision making is the most important task of a manager and it is often a very difficult one. The 

domain of decision analysis models falls between two extreme criterions. These depends upon the degree of 

knowledge we have about the outcome of our actions. One “pole” on this scale is deterministic. The opposite 

“pole” is pure uncertainty. 

Modeling related to decision making problems involves two distinct parties—one is the decision 

maker and the other is the model builder known as the analyst. The analyst is to assist the decision maker in 

his/her decision making process. Therefore, the analyst must be equipped with more than a set of analytical 

methods. Specialists in model building are often tempted to study a problem, and then go off in isolation to 

develop an elaborate mathematical model for use by the manager (i.e., the decision maker). 

In deterministic models, a good decision is judged by the outcome alone. However, in probabilistic 

models, the decision maker is concerned not only with the outcome value but also with the amount of risk 

each decision carries. As an example of deterministic versus probabilistic models, consider the past and the 

future. Nothing we can do can change the past, but everything we do influences and changes the future, 

although the future has an element of uncertainty. Managers are captivated much more by shaping the future 

than the history of the past. 

Uncertainty is the fact of life and business. Probability is the guide for a “good” life and successful 

business. The concept of probability occupies an important place in the decision making process, whether the 

problem is one faced in business, in government, in the social sciences, or just in one's own everyday personal 

life. In very few decision making situations is perfect information—all the needed facts—available. Most 

decisions are made in the face of uncertainty. Probability enters into the process by playing the role of a 

substitute for certainty—a substitute for complete knowledge. Ahmed (2000) presented several examples 

having decision dependent uncertainties that were formulated as MILP problems and solved by LP-based 

branch & bound algorithms. Moreover, Viswanath et al. (2004) and Held and Woodruff (2005) addressed the 

endogenous uncertainty problems where decisions can alter the probability distributions.  

Recently, few practical applications that involve multistage stochastic programming with endogenous 

uncertainty have been addressed. Goel and Grossmann (2004) and Goel et al. (2006) dealt with the gas field 

development problem under uncertainty in size and quality of reserves where decisions on the timing of field 

drilling yield an immediate resolution of the uncertainty. Solak (2007) considered the project portfolio 

optimization problem that deals with the selection of research and development projects and determination of 

optimal resource allocations under decision dependent uncertainty where uncertainty resolved gradually. 

Colvin and Maravelias (2008, 2010) presented several theoretical properties, specifically for the problem of 
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scheduling of clinical trials having uncertain outcomes in the pharmaceutical R&D pipeline, and developed a 

branch and cut framework to solve these MSSP problems 

 

2. Stochastic programming 

 

A stochastic program (SP) is a mathematical program (linear, nonlinear or mixed-integer) in which 

some of the model parameters are not known with certainty, and the uncertainty can be expressed with known 

probability distributions Birge and Louveaux (1997). This area is receiving increasing attention given the 

limitations of deterministic models. Applications arise in a variety of industries: Financial portfolio planning 

over multiple periods for insurance and other financial companies, in face of uncertain prices, interest rates, 

and exchange rates, Exploration planning for petroleum companies, Fuel purchasing when facing uncertain 

future fuel demand, Fleet assignment: vehicle type to route assignment in face of uncertain route demand, 

Electricity generator unit commitment in face of uncertain demand, Hydro management and flood control in 

face of uncertain rainfall, lending in face of uncertain input scrap qualities, Product planning in face of future 

technology uncertainty, Stochastic programs fall into two major categories: a) multistage stochastic programs 

with recourse, and b) chance-constrained programs. LINGO's capabilities are extended to solve models in the 

first category, namely multistage stochastic recourse models. The term stochastic program (SP) refers to a 

multistage stochastic model with recourse. The term stage is an important concept in this paper. Usually it 

means the same as ‘time period’, however there are situations where a stage may consist of several time 

periods. The terms random, uncertain and stochastic are used interchangeably. 

 

3. Multistage Decision Making under Uncertainty 

Multistage decision making under uncertainty involves making optimal decisions for a T-stage 

horizon before uncertain events (random parameters) are revealed while trying to protect against unfavorable 

outcomes that could be observed in the future. 

In general form, a multistage decision process with T+1 stages follows an alternating sequence of 

random events and decisions:  

i. in stage 0, we make a decision x0, taking into account that………. 

ii. at the beginning of stage 1, “Nature” takes a set of random decisions ω1, leading to realizations of all 

random events in stage 1, and… 
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iii. at the end of stage 1, having seen nature’s decision, as well as our previous decision, we make a 

recourse decision x1(ω1), taking into account that … 

iv. at the beginning of stage 2, “Nature” takes a set of random decisions ω2, leading to realizations of all 

random events in stage-2, and… 

v. at the end of stage 2, having seen nature’s decision, as well as our previous decisions, we make a 

recourse decision x2(ω1, ω2), taking into account that … 

. 

. 

. 

T0: At the beginning of stage T, “Nature” takes a random decision, ωT, leading to realizations of all 

random events in stage T, and… 

T1: at the end of stage T, having seen all of nature’s T previous decisions, as well as all our previous 

decisions, we make the final recourse decision xT(ω1,…,ωT). 

The relationship between the decision variables and realizations of random data: 

 

 
Each decision, represented with a rectangle, corresponds to an uninterrupted sequence of decisions 

until the next random event. And each random observation corresponds to an uninterrupted sequence of 

random events until the next decision point.  
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The relationship between problem solving and decision making: 

 
 

Recourse Model: 

 

The decision taken in stage 0 is called the initial decision, whereas decisions taken in 

succeeding stages are called recourse decisions. Recourse decisions are interpreted as corrective 

actions that are based on the actual values the random parameters realized so far, as well as the past 

decisions taken thus far. Recourse decisions provide latitude for obtaining improved overall 

solutions by realigning the initial decision with possible realizations of uncertainties in the best 

possible way. The multistage stochastic program with (T+1) stages is: 

 

Minimize (or maximize): 
0 0 1 1 1 2 2 2 1 1[ [ .......... [ ].......]]Tc x E c x E c x E c x+ + +  

such that: 

 

where, 

(ω1,..., ωt) represents random outcomes from event space (Ω1,...,Ωt) up to stage-t, 
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A(ω1,..., ωt)tp is the coefficient matrix generated by outcomes up to stage-t for all p=1…t, t=1…T, 

c(ω1,..., ωt)t is the objective coefficients generated by outcomes up to stage-t for all t=1…T, 

b(ω1,..., ωt)t is the right-hand-side values generated by outcomes up to stage-t for all t=1…T, 

L(ω1,..., ωt)t and U(ω1,..., ωt)t are the lower and upper bounds generated by outcomes up to 

stage-t for all t=1…T, 

’~’ is one of the relational operators '≤', ‘=’, or ‘≥’; and 

x0 and xt ≡ x(ω1,..., ωt)t are the decision variables (unknowns) for which optimal values are sought. The 

expression being optimized is called the cost due to initial-stage plus the expected cost of recourse. 

Setting up Stochastic Programming Model of the Problem: 

There are four steps to setting up an Stochastic Programming Model: 

Step I - Defining the Core Model: 

The main/core model is the same optimization model we would construct if all the random variables 

were known with certainty. There is nothing in the core model that addresses the stochastic nature of the 

model. For our current example. This model is formulated as follows: 

A quilt shop must come up with a plan for its quilt purchases under uncertain weather 

conditions.  The demand for the current period (period 1) is known and is 100 units.  The demand for the 

upcoming period is not known with certainty and will depend on how cold the weather is.  There are three 

possible outcomes for the weather: normal, cold and very cold.  Each of these outcomes are equally 

likely.  The following table lists the costs and demands under the three outcomes 

Outcome Probability Quilt Cost/Unit (Rs.) Units Demand 

Normal 1/3 200.00 100 

Cold 1/3 300.00 150 

Very Cold 1/3 500.00 180 

 

Quilt for the current period is bought now and delivered directly to the customers at a cost of Rs. 200 

per unit. Quilt in the upcoming period can either be bought now and held in storage for period 2 use, or it can 
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be purchased in period 2 at a price that will depend on the weather as per the table above.  Storing quilt 

bought in period 1 for use in period 2 costs the company Rs.10 per unit.  The question the shopkeeper is faced 

with is:  How much Quilt should be bought in periods 1 and 2 to meet total customer demand at minimal 

expected cost? 

Step II - Identifying the Random Variables: 

The next step in building our SP model is to identify the random variables. The random variables are 

the variables that are stochastic by nature and whose values are not known before we must make our initial 

decisions. In the above problem, there are two random variables, the second period cost and demand. 

 

Step III - Identifying the Initial Decision and Recourse Variables: 

The next step is to identify the initial decision variables and the recourse variables. Unlike the random 

variables, which are under Mother Nature's control, the initial decision and recourse variables are under our 

control. The initial decision variables occur at the very outset, before any of the random variables become 

known, and are always assigned to stage 0. The recourse variables are the subsequent decisions we make after 

learning of the outcomes of the random variables. Recourse variables that are decided after the stage N 

random variables become known are assigned to stage N as well. In the given problem, there is one initial 

decision, which is PURCHASE_1, the amount of quilt to purchase in period 1. The weather then reveals itself 

and our recourse variable is PURCHASE_2, the amount to purchase in period 2. 

Step IV - Declare Distributions 

The last step is to declare the joint probability distribution for the random variables COST_2 and 

DEMAMD_2. In this case, we will be using an outcome table distribution, and in order to declare the 

distribution, make use of the scalar-based functions. Now, to be able to actually apply the distribution to 

random variables, we need to declare an instance of the distribution. By doing things this way, it's possible to 

reuse the same outcome table on more than one set of random variables. 

Our last step is to associate, or bind, the random variables to the instance of the distribution. 

Specifically, we wish to bind the cost and demand random variable. 
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LINGO Model of the Problem 

!QUILT PROBLEM [MSDDMDS] FOR THE MODEL; 

Model: 

! Minimize Total Cost = Purchases + Holding; 

[R_OBJ] MIN= PURCHASE_COST + HOLD_COST; 

! Compute purchase cost; 

[R_PC] PURCHASE_COST = 5 * PURCHASE_1 + COST_2 * PURCHASE_2; 

! Compute holding cost; 

[R_HC] HOLD_COST = INVENTORY_1 + INVENTORY_2; 

! Compute inventory levels; 

[R_I1] INVENTORY_1 = PURCHASE_1 - 100; 

[R_I2] INVENTORY_2 = INVENTORY_1 + PURCHASE_2 - DEMAND_2; 

! *** STEP 2 *** - Define Random Variables; 

!The random variables are period 2's demand and cost.; 

@SPSTGRNDV( 1, COST_2); 

@SPSTGRNDV( 1, DEMAND_2); 

! *** STEP 3 *** - Define initial decision and recourse 

variables; 

!The initial decision is how much to purchase in period 1; 

@SPSTGVAR( 0, PURCHASE_1); 

!Period 2 purchases are a recourse variable after 

the weather reveals itself; 

@SPSTGVAR( 1, PURCHASE_2); 

! *** STEP 4 *** - Assign distributions to the random 

variables; 

!Declare a discrete distribution called 'DST_DMD' with 

three outcomes and two jointly distributed variables 

(i.e., Demand and Cost); 

@SPTABLESHAPE( 'DST_DMD', 3, 2); 

!Load the three equally likely outcomes into 'DST_DMD'; 

!Dist Name Probability Cost Demand; 

@SPTABLEOUTC( 'DST_DMD', 1/3, 200.0, 100); 
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@SPTABLEOUTC( 'DST_DMD', 1/3, 300.0, 150); 

@SPTABLEOUTC( 'DST_DMD', 1/3, 500.0, 180); 

!Declare a specific instance of the 'DST_DMD' distribution, 

naming the instance 'DST_DMD_1'; 

@SPTABLEINST( 'DST_DMD', 'DST_DMD_1'); 

!Bind Period 2 Cost and Demand to the distribution instance; 

@SPTABLERNDV( 'DST_DMD_1', COST_2, DEMAND_2);!The random variables are 

period 2's demand and cost.; 

!STOP; 

 

Solution  

i)Solution window 

 

 

 

 

 

 

 

 

 

 

 

ii) Complete Solution: 

  Global optimal solution found. 

  Objective value:                              1616.667 

  Infeasibilities:                              0.000000 

  Total solver iterations:                             1 
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  Expected value of: 

     Objective (EV):                                         1616.667 

     Wait-and-see model's objective (WS):                    1360.000 

     Perfect information (EVPI = |EV - WS|):                 256.6667 

     Policy based on mean outcome (EM):                      8152.222 

     Modeling uncertainty (EVMU = |EM - EV|):                6535.556 

 

  Stochastic Model Class:        SINGLE-STAGE STOCHASTIC 

  Deteq Model Class:                                  LP 

 

  Total scenarios/leaf nodes:                          3 

  Total random variables:                              2 

  Total stages:                                        1 

 

                                     Core          Deteq 

  Total variables:                      6             18 

  Nonlinear variables:                  0              0 

  Integer variables:                    0              0 

 

  Total constraints:                    5             17 

  Nonlinear constraints:                0              0 

 

  Total nonzeros:                      13             47 

  Nonlinear nonzeros:                   0              0 

 

  Stage 0 Solution 

  ---------------- 

                                                    Variable           Value 

                                                  PURCHASE_1        280.0000 

                                                 INVENTORY_1        180.0000 

                                                      Row    Slack or Surplus 

                                                      R_I1        0.000000 

  Staging Report 

  -------------- 

                                             Random Variable           Stage 

                                                      COST_2               1 
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                                                    DEMAND_2               1 

 

                                                    Variable           Stage 

                                               PURCHASE_COST               1* 

                                                   HOLD_COST               1* 

                                                  PURCHASE_1               0 

                                                  PURCHASE_2               1 

                                                 INVENTORY_1               0* 

                                                 INVENTORY_2               1* 

 

                                                         Row           Stage 

                                                       R_OBJ               1* 

                                                        R_PC               1* 

                                                        R_HC               1* 

                                                        R_I1               0* 

                                                        R_I2               1* 

 

                                                      (*) Stage was inferred 

  Random Variable Distribution Report 

 ----------------------------------- 

                        Sample        Sample 

Random Variable          Mean         StdDev      Distribution 

         COST_2      333.3333      124.7219      DST_DMD,DST_DMD_1,1 

       DEMAND_2      143.3333      32.99832      DST_DMD,DST_DMD_1,2 

 

  Scenario: 1   Probability: 0.3333333   Objective: 1660.000 

  ---------------------------------------------------------- 

                                             Random Variable           Value 

                                                      COST_2        200.0000 

                                                    DEMAND_2        100.0000 

 

                                                    Variable           Value 

                                               PURCHASE_COST        1400.000 

                                                   HOLD_COST        260.0000 

                                                  PURCHASE_1        280.0000 

                                                  PURCHASE_2        0.000000 
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                                                 INVENTORY_1        180.0000 

                                                 INVENTORY_2        80.00000 

 

                                                         Row           Value 

                                                        R_PC        0.000000 

                                                        R_HC        0.000000 

                                                        R_I1        0.000000 

                                                        R_I2        0.000000 

 

  Scenario: 2   Probability: 0.3333333   Objective: 1610.000 

  ---------------------------------------------------------- 

 

                                             Random Variable           Value 

                                                      COST_2        300.0000 

                                                    DEMAND_2        150.0000 

 

                                                    Variable           Value 

                                               PURCHASE_COST        1400.000 

                                                   HOLD_COST        210.0000 

                                                  PURCHASE_1        280.0000 

                                                  PURCHASE_2        0.000000 

                                                 INVENTORY_1        180.0000 

                                                 INVENTORY_2        30.00000 

 

                                                         Row           Value 

                                                        R_PC        0.000000 

                                                        R_HC        0.000000 

                                                        R_I1        0.000000 

                                                        R_I2        0.000000 

 

  Scenario: 3   Probability: 0.3333333   Objective: 1580.000 

  ---------------------------------------------------------- 

 

                                             Random Variable           Value 

                                                      COST_2        500.0000 

                                                    DEMAND_2        180.0000 
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                                                    Variable           Value 

                                               PURCHASE_COST        1400.000 

                                                   HOLD_COST        180.0000 

                                                  PURCHASE_1        280.0000 

                                                  PURCHASE_2        0.000000 

                                                 INVENTORY_1        180.0000 

                                                 INVENTORY_2        0.000000 

 

                                                         Row           Value 

                                                        R_PC        0.000000 

                                                        R_HC        0.000000 

                                                        R_I1        0.000000 

                                                        R_I2        0.000000 

Solution summary: 

The stage-0 solution lists the values for all variables and rows that are part of the initial decision. 

These values are of pressing importance, in that they must be implemented currently. For this reason, they are 

displayed in their own separate section near the top of the report. In the case of our quilt company, the optimal 

initial decision to minimize expected cost is to purchase 280 units of quilt in period 1, storing 180 units in 

inventory. If period 2 is normal the company can fulfill demand entirely from inventory, otherwise it must 

make up the difference through additional purchases in period 2. The remainder of the solution report contains 

sub-reports for each of the scenarios. Information regarding the each scenario's probability, objective value 

and variable values are displayed.  

Expected Value of Objective (EV) - is the expected value for the model's objective over all the 

scenarios, and is the same as the reported objective value for the model. [Calculated value is Rs. 1616.667] 

Expected Value of Wait-and-See Model's Objective (WS) - reports the expected value of the objective 

if we could wait and see the outcomes of all the random variables before making our decisions. Such a policy 

would allow us to always make the best decision regardless of the outcomes for the random variables, and, of 

course, is not possible in practice. For a minimization, it's true that WS <= EV, with the converse holding for 

a maximization. Technically speaking, WS is a relaxation of the true SP model, obtained by dropping the non-

anticipativity constraints. [Calculated value is Rs. 1360.000] 

Expected Value of Perfect Information (EVPI) - is the absolute value of the difference between EV 

and WS. This corresponds to the expected improvement to the objective were we to obtain perfect 
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information about the random outcomes. As such, this is a expected measure of how much we should be 

willing to pay to obtain perfect information regarding the outcomes of the random variables. [Calculated 

value is Rs. 256.6667] 

Expected Value of Policy Based On Mean Outcome (EM) - is the expected true objective value if we 

(mistakenly) assume that all random variables will always take on exactly their mean values. EM is computed 

using a two-step process. First, the values of all random variables are fixed at their means, and the resulting 

deterministic model is solved to yield the optimal values for the stage 0 decision variables. Next, a) the stage 

0 variables are fixed at their optimal values from the previous step, b) the random variables are freed up, c) 

the non-anticipativity constraints are dropped, and d) this wait-and-see model is solved. EM is the objective 

value from this WS model. [Calculated value is Rs. 8152.222]. 

Expected Value of Modeling Uncertainty (EVMU) - is the absolute value of the difference EV - EM. 

It is a measure of what we can expect to gain by taking into account uncertainty in our modeling analysis, as 

opposed to mistakenly assuming that random variables always take on their mean outcomes. [Calculated 

value is Rs. 6535.556] 

 

7. Conclusions and Future Research 

 

The key contributions of this paper are the following: 

• We have proposed a multi-stage stochastic programming formulation for a expansion problem under 

uncertainty.   

• A reformulation scheme has been developed by exploiting special sub-structure of decision problem.  

• We have presented computational results demonstrating the effectiveness of the reformulation of 

recourse model for the multi-stage decision problem under uncertainty. The results in this paper pave 

the way for a number of future research avenues.  
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Abstract 

We obtain a compact expression for  ∑ �
�	�����

	
�
�	   which allows to deduce 

the value of ζ(2), and also the Sondow’s  formula for π via the Wallis 

product. 

 

Keywords: Sondow’s expression for π, Wallis product, ζ(2). 

1. Introduction 

Sondow [1-3] published the relation: 
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� ;                                             … (1) 

in Sec 2 we employ the Wallis product [4-6] and known Lanczos relations [7] for cot	���� and ( )2
tan xπ , to 

give an elementary deduction of (1). 

2. Sondow’s Formula 

    Lanczos [7] uses interpolation techniques to obtain the expressions: 
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•  Dedicated to Professor M. A. Pathan on his 75th birth anniversary 
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then it is immediate that 
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From (3) when  � ⟶ 0 and the Bernoulli-Ho-pital rule we deduce the following value of the Riemann 

zeta function [8]: 
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. 	 ;                                                         … (4) 

and (3) with � � 1 implies the formula: 
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which is a telescoping sum [3] because: 
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On the other hand, we have the Wallis product [4-6]: 
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hence the Sondow’s expression (1) is consequence from (5) and (7). 
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