
 
 
 

 

A Half Yearly International Research Journal 

of 

Rajasthan Ganita Parishad 
 

This issue is dedicated to Dr. D. C. Gokhroo, 

Founder Member of Rajassthan Ganita Parishad 
 
 
 
 

Registered Head Office 

Department of Mathematics 

SPC Government College, AJMER – 305001 (INDIA) 

(NAAC Accredited “A” Grade College) 
 

 
 

Website: www.rgp.co.in 

E-mail: rgp@rgp.co.in Issued April, 2022 E-mail: editor@rgp.co.in 
E-mail: cmtr@rgp.co.in 

Volume 31 June & December 2017 ISSN 0970-9169 

http://www.rgp.co.in/
mailto:rgp@rgp.co.in
mailto:editor@rgp.co.in
mailto:cmtr@rgp.co.in


Notes for contributors 

Membership Fees / Subscription 

  
 

 

 
 

AGARWAL, A.K., Chandigarh 

E-mail: aka@pu.ac.in 

JAIN, RASHMI, Jaipur 
E-mail: rashmiramesh1@gmail.com 

RAJ BALI, Jaipur 
E-mail: balir5@yahoo.co.in 

AZAD, K.K., Allahabad JAT, R. N., Jaipur 
E-mail: khurkhuria_rnjat@yahoo.com 

RAJVANSHI, S.C., Chandigarh 

E-mail: satishrajvanshi@yahoo.com 

BANERJEE, P.K., Jodhpur 
E-Mail: banerjipk@yahoo.com 

MAITHILI SHARAN 
E-mail: maithilis@cas.iitd.ernet.in 

SHARMA, G.C., Agra 

BHARGAVA, RAMA, Roorkee 

E-Mail: rbahrfma@iitr.ac.in 

MATHAI, A.M., Montreal(Canada) RADHA KRISHNA, L., Bangalore 

E-mail: lrkwmr@gmail.com 

CHOUDHARY, C.R., Jodhpur 
E-mail: crc2007@rediffmail.com 

MUKHERJEE, H.K.,(Shilong) SRIVASTAVA, H.M.,Victoria(Canada) 

E-mail: harimsri@uvic.ca 

VERMA, G. R., Kingston(USA) 
E-mail: verma@math.uri.edu 

NAGAR, ATULYA, Liverpool(U.K.) 
E-mail: nagara@hope.ac.uk 

TIKEKAR, RAMESH, Pune 
E-mail: tikekar@gmail.com 

GUPTA, MANJUL, Kanpur 
E-Mail: manjul@iitk.ac.in 

PATHAN, M.A., Aligarh 
E-mail: mapathan@gmail.com 

 

Editor: Dr. V. C. Jain 

Associate Professor, Department of Mathematics, Engineering College Ajmer 

E-mail: editor@rgp.co.in 

 

 

 

1. The editors will be glad to receive contributions only from all parts of India / abroad in any area of Mathematics 

(Research / Teaching etc.). 

2. Manuscripts for Publication should be sent through E-mail directly to the editor@rgp.co.in along with hard copy in Triplicate 

duly computerized with double spacing preferably with text in Times New Roman font 11pts. and Mathematical symbols(Math 

Type, Equation Editor or Corel equation). 

3. Authors should provide abstract and identify 4 to 5 key words for subject classification. 

4. Unduly long papers and papers with many diagrams / tables will not be normally accepted in general, length of the accepted 

paper should not exceed 10 printed pages. 

4. The contributors are required to meet the partial cost of Publication at the rate of Rs. 200/- or equivalent US $ per printed page 

size A4 (even number pages) payable in advance. 

 

 Period In India(Rs.) Outside India(US $) 

Admission Fee / Enrolment Fee First time only 100 100(or equivalent) 

Life Membership  2000 2000(or equivalent) 

Annual Membership fee for 

teachers(Colleges/Universities), T.R.F., Registered 

Research Scholars 

Financial year 250 250(or equivalent) 

Educational/ Research Institutions Calendar year 500 500(or equivalent) 
 

All payments must be made by Bank DD in favour of Rajasthan Ganita Parishad payable at AJMER or online State Bank of India 

Account No. 10200807636, IFSC Code: SBIN0000603 under intimation to the Treasurer, Rajasthan Ganita Parishad, Deptt. of 

Mathematics, SPC Govt. College, AJMER-305001(INDIA). 

Editorial Board 

mailto:aka@pu.ac.in
mailto:rashmiramesh1@gmail.com
mailto:balir5@yahoo.co.in
mailto:khurkhuria_rnjat@yahoo.com
mailto:satishrajvanshi@yahoo.com
mailto:banerjipk@yahoo.com
mailto:maithilis@cas.iitd.ernet.in
mailto:rbahrfma@iitr.ac.in
mailto:lrkwmr@gmail.com
mailto:crc2007@rediffmail.com
mailto:harimsri@uvic.ca
mailto:verma@math.uri.edu
mailto:nagara@hope.ac.uk
mailto:tikekar@gmail.com
mailto:manjul@iitk.ac.in
mailto:mapathan@gmail.com
mailto:editor@rgp.co.in
http://co.in/


1 |  

 

 

 

Mellin – Barnes type of double integrals  for the Exton function of two 

variables 

                                                R.K.Saxena and M.A.Pathan 

 Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur -

342004, Rajasthan, India  

                                            (e-mail: ram.saxena@ yahoo.com)  

Centre for Mathematical and statistical Sciences (CMSS),  Peechi P.O., Thrissur, 

Kerala-680653, (India) 

                                                  (e-mail: mapathan@gmail.com) 

Abstract. The object of this paper is to derive the  Mellin –Barnes type of double integrals for the  

generalized  hypergeomertric  function introduced by Exton.  The results derived are useful in obtaining 

the double Mellin transform of the Exton function of two variables. The Mellin-Barnes type integrals 

have more freedom in parameters and variables in comparison to series definition. We also evaluate 

double integrals involving the Exton function of two variables, which includes, as special cases , the 

results for the Kampé de Feriet double hypergeometric function in the modified  notation of  Srivastava 

and Panda, additional double hypergeometric function due to Exton and Appell hyprgeometric functions 

of two variables etc. Finally we obtain the Riemann-Liouville fractional integral and Riemann-Liouville 

fractional derivative for the Exton function. 

 The results are of general character and  a number of known results follow as special cases of our 

investigations.  The results obtained also include , as special cases, the results given by  Reed and in the 

monograph by Erdélyi et al. The results are  useful in the study of statistical distributions .Some special 

cases of the main results are also discussed. 

Keywords and Phrases :   Mellin –Barnes type integrals, double Mellin transform, Exton‟s double 

hypergeometric function, Kampé de Feriet  double hypergeometric function, Appell functions.Humbert‟s 

double hypergeometric functions. 

2010 AMS Subject Classification : Primary 33C99, Secondary 33C20. 

1.Introduction 

In an attempt to derive a double integral representation for the well-known Gauss hypergeometric 

function, Exton  [4,p.339(13)] introduced the following double hypergeometric series in two variables as 
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  𝐻
𝐴:𝐵;𝐶:𝐷
𝐸:𝐺;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;

  𝑥,𝑦  

    =    
[(𝑎𝐴 )]2𝑖+𝑗 [(𝑏𝐵 )]𝑖+𝑗 [(𝑐𝐶)]𝑖[(𝑑𝐷 )]𝑗

[(𝑒𝐸)]2𝑖+𝑗 [(𝑔𝐺 )]𝑖+𝑗 [(𝑚𝑀 )]𝑖 [ 𝑛𝑁  ]𝑗

∞
𝑗=0

∞
𝑖=0

𝑥 𝑖𝑦 𝑗

𝑖!𝑗 !
,      ( 0  <  | x| < 1), 0 < |y | < 1)  (1.1) 

For convenience in presentation, the  symbol  ( 𝑎𝐴) denotes  the array of   A   parameters given by 

𝑎1 ,𝑎2 ,𝑎3 ,… ,𝑎𝐴  in the contracted notation of Slater [ 10,p.54; 11, p.41]. The symbol Δ(𝑁;𝑎)represents an 

array of   N  parameters    
𝑎

𝑁
,
𝑎+1

𝑁
,…, 

𝑎+𝑁−1

𝑁
  [13,𝑝. 47,𝑝𝑝. 213].  Some special cases  of  (1.1) are given 

below. 

By making suitable adjustments in the number of  numerator and denominator parameters of (1.1), it 

gives  Kampé de Feriet  double hypergeometric function in the modified  notation of  Srivastava and 

Panda [ 14,p.423 (26), see also [15,p.23 (1.2,1.3)] denoted by 

     𝐹
𝐵;𝐶:𝐷
𝐺;𝑀;𝑁

 𝑥,𝑦 =  𝐻
0:𝐵;𝐶:𝐷
0:𝐺;𝑀;𝑁

, (x,y)   =    
[(𝑏𝐵 )]𝑖+𝑗 [(𝑐𝐶)]𝑖[(𝑑𝐷 )]𝑗

[(𝑔𝐺 )]𝑖+𝑗 [(𝑚𝑀 )]𝑖 [ 𝑛𝑁  ]𝑗

∞
𝑗=0

∞
𝑖=0

𝑥 𝑖𝑦 𝑗

𝑖!𝑗 !
 , (1.2) 

where   0  <  | x| < 1, 0 < |y | < 1.   

Another  special case is additional double hypergeometric function due to Exton [5,p.137 (1.2) ] denoted 

by 

    𝑋
𝐴;𝐶:𝐷
𝐸;𝑀;𝑁

 =    𝐻
𝐴: 0;𝐶:𝐷
𝐸: 0;𝑀;𝑁

   
[(𝑎𝐴 )]2𝑖+𝑗 [(𝑐𝐶)]𝑖[(𝑑𝐷 )]𝑗

[(𝑒𝐸)]2𝑖+𝑗 [(𝑚𝑀 )]𝑖 [ 𝑛𝑁  ]𝑗

∞
𝑗=0

∞
𝑖=0

𝑥 𝑖𝑦 𝑗

𝑖!𝑗 !
 , (1.3) 

where   0  <  | x| < 1, 0 < |y | < 1.   

Similarly Appell‟s four hypergeometric functions of two variables    𝐹1,  𝐹2 , 𝐹3  and  𝐹4 [2,p.224 (6,7,8,9)] 

.Humbert‟ seven double hypergeometric functions 𝜙1 ,𝜙2 ,𝜙3 ,𝜓1, 𝜓2, Ξ1, , Ξ2  [2,𝑝. 225 − 226 20 −

26 ; see also[ 13,pp.58-59]. Horn‟s double hypergeometric function 𝐻3,𝐻4 2,𝑝. 225  15,16     , and its 

confluent forms 𝐻6and 𝐻7[2,p.226(34.35)] are all special cases of the double hypergeometric function 

due to Exton defined by (1.1). In what follows 

Γ  𝑎𝐴 + 𝑠 + 𝑡  will stand for the product of A  ecxpressions 

Γ  𝑎1 + 𝑠 + 𝑡  Γ  𝑎2 + 𝑠 + 𝑡 …Γ  𝑎𝐴 + 𝑠 + 𝑡 . Similar meaning holds for other gamma functions . 

In a recent paper, Chaudhry et al  [1 ] obtained certain transformations for the Exton function of two 

variables defined by (1.1). This has motivated the authors  to obtain the double integral representation and 

other properties for this function
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Note 1.1. It is interesting to observe that the Horn‟s function 𝐻2  and 𝐻4 are special cases pf the Exton 

double hypergeometric function defined by (1.1)as indicated by Exton  [ 4 ].For certain identities for 

generalized hypergeometric function, see [12]. 

2. Mellin –Barnes type of integral for the function  𝑯
𝑨:𝑩;𝑪:𝑫
𝑬:𝑮;𝑴;𝑵

  

Theorem 2.1. It will be shown here that  

  𝐻
𝐴:𝐵;𝐶:𝐷
𝐸:𝐺;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;

  𝑥,𝑦  

= - 
𝜅

4𝜋2   Ω 𝑠, 𝑡 (−𝑥)𝑠  (−𝑦)𝑡  𝑑𝑠 𝑑𝑡 
+𝑖∞

−𝑖∞

+𝑖∞

−𝑖∞
       (2.1) 

where 

  ΩE:G;M;N
A:B;C;D  𝑠, 𝑡 =

Γ −s Γ(−t)Γ[(𝑎𝐴 )+2𝑠+𝑡]Γ  𝑏𝐵  +𝑠+𝑡 Γ  𝑐𝐶 +𝑠 Γ  𝑑𝐷  +𝑡 

Γ  𝑒𝐸 +2𝑠+𝑡 Γ  𝑔𝐺  +𝑠+𝑡 Γ mM +𝑠 Γ  𝑛𝑁  +𝑡 
 

|arg(-x)| < 𝜋  and |arg(-y)| < 𝜋  𝑎𝑛𝑑   𝜅 =
Γ  𝑒𝐸  [ 𝑔𝐺  ]

Γ  𝑎𝐴   [ 𝑏𝐵 ]

Γ  𝑚𝑀   [ 𝑛𝑁  ]

Γ  𝑐𝐶  [ 𝑑𝐷  ]
. 

Proof. If we evaluate the integral as  a sum of the residues by calculus of residues at the simple poles of  

Γ −𝑠   at the points  s=- i (i𝜖𝑁0)   and Γ −𝑡   at the points t = -𝑗 (𝑗𝜖𝑁0), we see that the value of the 

integral is equal to 

𝜅  
Γ[(𝑎𝐴 )+2𝑖+𝑗 ]Γ[(𝑏𝐵 )+𝑖+𝑗 ]Γ[(𝑐𝐶)+𝑖]Γ[ 𝑑𝐷  +𝑗 ]

Γ[(𝑒𝐸)+2𝑖+𝑗 ]Γ[(𝑔𝐺 )+𝑖+𝑗 ]Γ[(Γ[(𝑚𝑀 )+𝑖])]Γ[(𝑛𝑁 )+𝑗 ]
∞
𝑗=0

∞
𝑖=0

𝑥 𝑖

𝑖!

𝑦 𝑗

𝑗 !
  

=  𝐻
𝐴:𝐵;𝐶:𝐷
𝐸:𝐺;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;

  𝑥, 𝑦  

This completes the proof of (2.1). 

3. Special cases of   (2.1) 

For The Kampé de Feriet function, in the notation of Srivastava and Panda [ 14,p.423 (26), see also 

[15,p.23 (1.2,1.3)], we obtain 

Corollary  3.1. The following result holds 

𝐻
0:𝐵;𝐶:𝐷
0:𝐺;𝑀;𝑁

 
−:  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;
  𝑥, 𝑦 = 𝐹

𝐵;𝐶:𝐷
𝐺;𝑀;𝑁

 
−:  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;
  𝑥,𝑦  

= - 
𝜅1

4𝜋2   
Γ −s Γ(−t)Γ  𝑏𝐵  +𝑠+𝑡 Γ  𝑐𝐶 +𝑠 Γ  𝑑𝐷  +𝑡 (−𝑥)𝑠  (−𝑦)𝑡

Γ  𝑔𝐺  +𝑠+𝑡 Γ mM +𝑠 Γ  𝑛𝑁  +𝑡 

+𝑖∞

−𝑖∞

+𝑖∞

−𝑖∞
𝑑𝑠𝑑𝑡 ,  (3.1) 

where  |arg(-x)| < 𝜋  , |arg(-y)| < 𝜋  𝑎𝑛𝑑   𝜅1 =
[ 𝑔𝐺  ]

Γ[ 𝑏𝐵  ]

Γ  𝑚𝑀   [ 𝑛𝑁  ]

Γ  𝑐𝐶  [ 𝑑𝐷  ]
.   (3.2) 
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For another additional double hypergeometric function due to Exton [4,p.137 (1.2) ] denoted by 

   𝑋
𝐴;𝐶:𝐷
𝐸;𝑀;𝑁

 =    𝐻
𝐴: 0;𝐶:𝐷
𝐸: 0;𝑀;𝑁

(x,y) ,we obtain 

Corollary 3.2. The following result holds: 

𝐻
0:𝐵;𝐶:𝐷
0:𝐺;𝑀;𝑁

 
−:  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;
  𝑥, 𝑦  = 𝐸

𝐵;𝐶:𝐷
𝐺;𝑀;𝑁

 
−:  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;
  𝑥,𝑦  

= - 
𝜅2

4𝜋2   
Γ −s Γ(−t)Γ  𝑏𝐵  +𝑠+𝑡 Γ  𝑐𝐶 +𝑠 Γ  𝑑𝐷  +𝑡 (−𝑥)𝑠  (−𝑦)𝑡

Γ  𝑔𝐺  +𝑠+𝑡 Γ mM +𝑠 Γ  𝑛𝑁  +𝑡 

+𝑖∞

−𝑖∞

+𝑖∞

−𝑖∞
𝑑𝑠𝑑𝑡 (3.3) 

where  |arg(-x)| < 𝜋  and |arg(-y)| < 𝜋  𝑎𝑛𝑑  𝜅2 =
Γ[ 𝑔𝐺  ]

[ 𝑏𝐵  ]

Γ  𝑚𝑀   [ 𝑛𝑁  ]

Γ  𝑐𝐶  [ 𝑑𝐷  ]
.(3.4) 

If we set   B=C=D=1. G=1, M=N=0, 𝑏1 = 𝑎, 𝑐1 = 𝑏, 𝑔1 = 𝑐,𝑑1 = 𝑏′  in  (2.1), 

we obtain [2,page 232, 5.8.3(10) ] 

Corollary  3.3. 

𝐹1 𝑎, 𝑏, 𝑏′; 𝑐; 𝑥,𝑦 =  −
Γ(𝑐)

4𝜋2Γ(𝑎)Γ(𝑏)Γ(𝑏′)
 

                              ×    
Γ −s Γ(−t)Γ a+𝑠+𝑡 Γ b+𝑠 Γ b ′+𝑡 (−𝑥)𝑠  (−𝑦)𝑡

Γ c+𝑠+𝑡 
𝑑𝑠𝑑𝑡

+𝑖∞

−𝑖∞
 (3.5

+𝑖∞

−𝑖∞
) 

where  |arg(-x)| < 𝜋  and |arg(-y)| < 𝜋   

If we set   B=C=D=1. G=1, M=N=0, 𝑏1 = 𝑎, 𝑐1 = 𝑏, 𝑔1 = 𝑐,𝑑1 = 𝑏′  in (3.1), 

 we obtain [2, page 232, 5.8.3(11) ] 

Corollary  3.4. The following result holds 

  𝐹2 𝑎, 𝑏, 𝑏′; 𝑐, 𝑐 ′;𝑥,𝑦  =−
Γ(𝑐)Γ(𝑐 ′)

4𝜋2Γ(𝑎)Γ(𝑏)Γ(𝑏 ′)
 

   ×   
Γ −s Γ(−t)Γ a+𝑠+𝑡 Γ b+𝑠 Γ b ′+𝑡 (−𝑥)𝑠  (−𝑦)𝑡

Γ c+𝑠 Γ c ′+𝑡 
𝑑𝑠𝑑𝑡

+𝑖∞

−𝑖∞
 , (3.6) 

+𝑖∞

−𝑖∞
 ) 

where  |arg(-x)| < 𝜋  and |arg(-y)| < 𝜋   

If we set M=N=B=0,G=1,C=D=2, 𝑏1 = 𝑎, 𝑐1 = 𝑏, 𝑐2 = 𝑏 , 𝑏1 = 𝑎,𝑑1 = 𝑎′, 𝑑2 , = 𝑏′, 𝑔1 = 𝑐,we 

obtain 

[ 2, page 232, 5.8.3(12)  ] 

Corollary 3.5. 
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𝐹3(a, 𝑎′, 𝑏, 𝑏′; 𝑐; 𝑥)     = - −
Γ 𝑐 

4𝜋2Γ 𝑎 Γ 𝑎 ′ Γ 𝑏 Γ 𝑏 ′ 
 

                           

 

    ×   
Γ −s Γ(−t)Γ a+𝑠 Γ b+𝑠 Γ a ′+𝑡 Γ b ′+𝑡 (−𝑥)𝑠  (−𝑦)𝑡

Γ c+𝑠+𝑡 

+𝑖∞

−𝑖∞

+𝑖∞

−𝑖∞
𝑑𝑠𝑑𝑡,(3.7) 

where  |arg(-x)| < 𝜋  and |arg(-y)| < 𝜋  . 

If we set  B=2, C=D=G=0, M=N=1, 𝑚1 = 𝑐,𝑛1 = 𝑐′ , 𝑏1 = 𝑎 , 𝑏2, = 𝑏  in (3.1),we obtain [2, page 232, 

5.8.3(13)   ] 

Corollary  3.6. 

   𝐹4(a, 𝑎′ , 𝑏, 𝑏′ ; 𝑐; 𝑥)     =  −
Γ 𝑐 Γ 𝑐 ′  

4𝜋2Γ 𝑎 Γ 𝑏 
 

                              ×   
Γ −s Γ(−t)

Γ c+s 

+𝑖∞

−𝑖∞

Γ a+s+t Γ b+s+t (−𝑥)𝑠  (−𝑦)𝑡

Γ(c′ +𝑡)

+𝑖∞

−𝑖∞
𝑑𝑠𝑑𝑡, (3.8) 

where  |arg(-x)| < 𝜋  and |arg(-y)| < 𝜋  . 

4. Double Mellin transform of the Exton function of two variables 

 Theorem 4.1.By applying the Reed „s Theorem [ 8, p.565 ]to (2.1), we immediately obtain the following 

double Mellin transform of the Exton function of two variables in the form 

  𝒙𝒔−𝟏
∞

𝟎

𝒚𝒕−𝟏
∞

𝟎

 𝐻
𝐴:𝐵;𝐶:𝐷
𝐸:𝐺;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;

 − 𝑥,−𝑦 𝑑𝑥𝑑𝑦 

       =  𝜅 ΩB:G;M;N
A:B;C;D  −𝑠,−𝑡 , (4.1) 

where 0<Re(2s+t)<Re( 𝑎𝐴 ), 0 < 𝑅𝑒 𝑠 + 𝑡 < 𝑅𝑒 𝑏𝑩 , 0<Re(𝑠) < 𝑅𝑒 𝑐𝐶 , 0 < 𝑅𝑒 𝑡 < 𝑅𝑒( 𝑑𝐷 ,  𝜅  is 

defined in  (2.1),and 

ΩE:G;M;N
A:B;C;D  𝑠, 𝑡 =

Γ −s Γ(−t)Γ[(𝑎𝐴 )+2𝑠+𝑡]Γ (𝑏𝑩)+𝑠+𝑡 Γ  𝑐𝐶 +𝑠 Γ  𝑑𝐷  +𝑡 

Γ  𝑒𝐸 +2𝑠+𝑡 Γ  𝑔𝐺  +𝑠+𝑡 Γ mM +𝑠 Γ  𝑛𝑁  +𝑡 
 (4.2) 

5. Special cases of   (4.1) 

Corollary  5.1. For The Kampé de Feriet function, in the notation of Srivastava and Panda [ 9,p.423 (26), 

see also [10,p.23 (1.2,1.3)], we obtain 

  𝒙𝒔−𝟏
∞

𝟎

𝒚𝒕−𝟏
∞

𝟎

 𝐻
0:𝐵;𝐶:𝐷
0:𝐺;𝑀;𝑁

 
−:  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;
 − 𝑥,−𝑦 𝑑𝑥𝑑𝑦 
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   =  𝜅1Ω0:G;M;N
0:B;C;D

  −𝑠,−𝑡 , (5.1) 

where 

Ω0:G;M;N
0:B;C;D  𝑠, 𝑡 =

Γ −s Γ(−t)Γ (𝑏𝑩)+𝑠+𝑡 Γ  𝑐𝐶 +𝑠 Γ  𝑑𝐷  +𝑡 

Γ  𝑔𝐺  +𝑠+𝑡 Γ mM +𝑠 Γ  𝑛𝑁  +𝑡 
 (5.2) 

0 < 𝑅𝑒 𝑠 + 𝑡 < 𝑅𝑒 𝑏𝑩 , 0<Re(𝑠) < 𝑅𝑒( 𝑐𝐶 , 0 < 𝑅𝑒 𝑡 < 𝑅𝑒( 𝑑𝐷 ,   𝜅1  is defined in  ( 3.2). 

Corollary 5.2. If we set B=G=0, we obtain the following result: 

  𝒙𝒔−𝟏
∞

𝟎

𝒚𝒕−𝟏
∞

𝟎

 𝐻
𝐴: 0;𝐶:𝐷
𝐸: 0;𝑀;𝑁

 
 𝑎𝐴 :−;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 :−;  𝑚𝑀 ;  𝑛𝑁 ;

 − 𝑥,−𝑦 𝑑𝑥𝑑𝑦 

       =  𝜅2 ΩB:0;M;N
A:0;C;D  −𝑠,−𝑡 , (5.3) 

where 

ΩB:0;M;N
A:0;C;D =

Γ −s Γ(−t)Γ[(𝑎𝐴 )+2𝑠+𝑡]Γ  𝑐𝐶 +𝑠 Γ  𝑑𝐷 +𝑡 

Γ  𝑒𝐸 +2𝑠+𝑡 Γ mM +𝑠 Γ  𝑛𝑁  +𝑡 
,  (5.4) 

 0<Re(2s+t)<Re( 𝑎𝐴 ), 0<Re(𝑠) < 𝑅𝑒 𝑐𝐶 , 0 < 𝑅𝑒 𝑡 < 𝑅𝑒( 𝑑𝐷 ,   𝜅2  is defined in  (3.4). 

Corollary 5.3.  If we set   B=C=D=1. G=1, M=N=0, 𝑏1 = 𝑎, 𝑐1 = 𝑏, 𝑔1 = 𝑐,𝑑1 = 𝑏′ , we obtain the result 

given by Reed [8]: 

  𝒙𝒔−𝟏
∞

𝟎
𝒚𝒕−𝟏

∞

𝟎
𝐹1 𝑎, 𝑏, 𝑏′ ; 𝑐; 𝑥,𝑦 dxdy 

                      = 
Γ(𝑐)

Γ(𝑎)Γ(𝑏)Γ(𝑏 ′ )

Γ(𝑠)Γ(𝑡)Γ(𝑎−𝑠−𝑡)Γ(𝑏−𝑠)Γ(𝑏 ′−𝑡)

Γ(𝑎)Γ(𝑏)Γ(𝑏 ′ )Γ(𝑐−𝑠−𝑡)
, (5.5) 

where Re(c)>0, 0<Re(s+t)< Re(a), 0<Re(s)<Re(b), 0<Re(t)<Re(𝑏′). 

Similarly, if we set   B=C=D=1. G=1, M=N=0, 𝑏1 = 𝑎, 𝑐1 = 𝑏, 𝑔1 = 𝑐,𝑑1 = 𝑏′   in (3.1) 

we obtain the result given by Reed  [8] 

  𝒙𝒔−𝟏
∞

𝟎
𝒚𝒕−𝟏

∞

𝟎
𝐹2 𝑎, 𝑏, 𝑏′ ; 𝑐, 𝑐′ ; 𝑥,𝑦 𝑑𝑥𝑑𝑦 =

Γ(𝑐)Γ(𝑐 ′ )

Γ(𝑎)Γ(𝑏)Γ(𝑏 ′ )

Γ s Γ t Γ a−s−t Γ b−s Γ(b ′−𝑡)

Γ c−s Γ(c′−𝑡)
 , (5.6) 

where  R(c)>0, Re(c′) > 0,0<Re(s+t)< Re(a), 0<Re(s)<Re(b), 0<Re(t)<Re(𝑏′). 

Corollary 5.4. If we set M=N=B=0,G=1,C=D=2, 𝑏1 = 𝑎, 𝑐1 = 𝑏, 𝑐2 = 𝑏 , 𝑏1 = 𝑎,𝑑1 = 𝑎′ , 𝑑2 , =

𝑏′ , 𝑔1 = 𝑐, we obtain the result given by Reed [8] 

  𝒙𝒔−𝟏
∞

𝟎
𝒚𝒕−𝟏

∞

𝟎
𝐹3 𝑎,𝑎′ , 𝑏, 𝑏′ ; 𝑐; 𝑥,𝑦 𝑑𝑥𝑑𝑦 =

Γ(𝑐)

Γ(𝑎)Γ(𝑏)Γ(𝑎 ′ )Γ(𝑏 ′ )

Γ s Γ t  a−𝑠−𝑡 Γ b−𝑠 Γ(b ′−𝑡)

Γ c−s Γ(c′−𝑡)
,(5.7) 

where  Re(c)>0, 0<Re(s+t)< Re(a), 0<Re(s)<Re(b), 0<Re(t)<Re(𝑏′). 
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Corollary 5.5. If we set  B=2, C=D=G=0, M=N=1, 𝑚1 = 𝑐,𝑛1 = 𝑐′ , 𝑏1 = 𝑎 , 𝑏2, = 𝑏  in (3.1),we 

obtainthe following result given by Reed [ 8 ]: 

  𝒙𝒔−𝟏
∞

𝟎
𝒚𝒕−𝟏

∞

𝟎
𝐹4 𝑎, 𝑏; 𝑐, 𝑐′ ; 𝑥,𝑦 𝑑𝑥𝑑𝑦  =

Γ(𝑐)

Γ(𝑎)Γ(𝑏)

Γ a−s−t Γ b−s−t Γ(c ′ )

Γ c−s Γ(c′−𝑡)
, (5.8) 

where R(c)>0, Re(c′) > 0, 0<Re(s+t)< Re(a), 0<Re(s+t)<Re(b). 

6. Fractional integrals and derivatives 

The Riemann –Liouville fractional integral of  f(t)  is defined in [3,6,7,9,16] 

    (I𝑎+
𝛼 𝑓) 𝑥 =  

1

Γ(𝛼)
 (𝑥 − 𝑡)𝛼−1𝑓 𝑡 𝑑𝑡  
𝑥

𝑎
(𝛼𝜖𝐶.𝑅𝑒 𝛼 > 0,     (6.1) 

The Riemann- Liouville fractional derivative of   f (t )  is defined as 

 

  (𝐷𝑎+
𝜇
𝑓) 𝑥 =   

1

Γ(−𝜇)
  (𝑥 − 𝑡)−𝜇−1𝑓 𝑡 𝑑𝑡  (𝑅𝑒 𝜇 < 0)

𝑥

𝑎
 

𝑑𝑚

𝑑𝑥𝑚
𝐷𝑎+
𝛼−𝑚  𝑓 𝑥    (𝑚− 1 ≤ 𝑅𝑒 𝜇 < 𝑚   𝑚𝜖 𝑁  

   (6.2)  

Power function formulas: 

If  𝛼,𝜌𝜖𝐶, 𝑅𝑒 𝛼 > 0, 𝑅𝑒 𝜌 > 0, 𝑡 > 0, then [ 7 , p. 107, eq. (1.122)] 

    𝐼0+
𝛼  𝑡𝜌−1  𝑥 =  

Γ(𝜌)

Γ(𝜌+𝛼)
𝑥𝜌+𝛼−1 .  (6.3) 

 I𝑓 𝛼, 𝜌𝜖𝐶, Re(𝜌) > 0, 𝑡 > 0,  then [7, p. 107, eq.(1.123)] 

    𝐷0+
𝛼 𝑡𝜌−1  𝑥 =  

Γ(𝜌)

Γ(𝜌−𝛼)
𝑥𝜌−𝛼−1 .   (6.4)  

By virtue of the results  (6.1)  and  (6.3), it  can be readily seen that 

   𝐼0+
𝛼   𝑡𝜌−1 𝐻

𝐴:𝐵;𝐶:𝐷
𝐸:𝐺;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;

  𝜆𝑡, , 𝜇𝑡   (x)    

         =  
Γ(𝜌)

Γ(𝜌+𝛼)
  𝑥𝜌+𝛼−1 𝐻

𝐴:𝐵 + 1;𝐶:𝐷
𝐸:𝐺 + 1;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ,𝜌;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺),𝜌+𝛼 : 𝑚𝑀 ;  𝑛𝑁 ;

  𝜆𝑥, , 𝜇𝑥 , (6.5) 

where Re(𝛼) > 0,𝑅𝑒 𝜌 > 0. 

Similarly using (6.4), it is not difficult to establish the formula 
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   𝐷0+
𝛼   𝑡𝜌−1 𝐻

𝐴:𝐵;𝐶:𝐷
𝐸:𝐺;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;

  𝜆𝑡, , 𝜇𝑡   (x)     

         =  
Γ(𝜌)

Γ(𝜌−𝛼)
  𝑥𝜌−𝛼−1 𝐻

𝐴:𝐵 + 1;𝐶:𝐷
𝐸:𝐺 + 1;𝑀;𝑁

 
 𝑎𝐴 :  𝑏𝐵 ,𝜌;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 : (𝑔𝐺),𝜌−𝛼 : 𝑚𝑀 ;  𝑛𝑁 ;

  𝜆𝑥, , 𝜇𝑥 , (6.6) 

where  𝑅𝑒 𝜌 > 0. 

7. Special cases of ( 6.5) and (6.6) 

Corollary 7.1. Using (1.2), the following result holds: 

   𝐼0+
𝛼  𝑡𝜌−1  𝐹

𝐵;𝐶:𝐷
𝐺;𝑀;𝑁

 
−:  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;
  𝜆𝑡, , 𝜇𝑡   (x)   

  

         =  
Γ(𝜌)

Γ(𝜌+𝛼)
  𝑥𝜌+𝛼−1 𝐹

𝐵 + 1;𝐶:𝐷
𝐺 + 1;𝑀;𝑁

 
−:  𝑏𝐵 ,𝜌;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺),𝜌+𝛼; 𝑚𝑀 ;  𝑛𝑁 ;
  𝜆𝑥, , 𝜇𝑥 , (7.1) 

where Re(𝛼) > 0,𝑅𝑒 𝜌 > 0. 

Corollary  7.2. Using (1.3) , the following result holds: 

    𝐼0+
𝛼  𝑡𝜌−1  𝑋

𝐴;𝐶:𝐷
𝐸;𝑀;𝑁

 
 𝑎𝐴 :−;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 :−;  𝑚𝑀 ;  𝑛𝑁 ;

  𝜆𝑡, , 𝜇𝑡   (x)    

         =  
Γ(𝜌)

Γ(𝜌+𝛼)
  𝑥𝜌+𝛼−1 𝐻

𝐴: 1;𝐶:𝐷
𝐸: 1;𝑀;𝑁

 
 𝑎𝐴 : 𝜌;  𝑐𝐶 ;  𝑑𝐷 ;

 𝑒𝐸 :𝜌 + 𝛼;:  𝑚𝑀 ;  𝑛𝑁 ;
  𝜆𝑥, , 𝜇𝑥 , (7.2) 

where Re(𝛼) > 0,𝑅𝑒 𝜌 > 0. 

Similarly, we can obtain the following special cases of  (6.6): 

Corollary  7.3. The following result holds: 

   𝐷0+
𝛼  𝑡𝜌−1 𝐹

𝐵;𝐶:𝐷
𝐺;𝑀;𝑁

 
−:  𝑏𝐵 ;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺): 𝑚𝑀 ;  𝑛𝑁 ;
  𝜆𝑡, , 𝜇𝑡   (x)   

  

         =  
Γ(𝜌)

Γ(𝜌−𝛼)
  𝑥𝜌−𝛼−1 𝐹

𝐵 + 1;𝐶:𝐷
𝐺 + 1;𝑀;𝑁

 
−:  𝑏𝐵 ,𝜌;  𝑐𝐶 ;  𝑑𝐷 ;

−: (𝑔𝐺),𝜌−𝛼; 𝑚𝑀 ;  𝑛𝑁 ;
  𝜆𝑥, , 𝜇𝑥 (7.3) 

where Re(𝛼) > 0,𝑅𝑒 𝜌 > 0. 
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Corollary 7.4. The following result holds: 

    𝐼0+
𝛼  𝑡𝜌−1  𝑋

𝐴;𝐶:𝐷
𝐸;𝑀;𝑁

 
 𝑎𝐴 :−;  𝑐𝐶 ;  𝑑𝐷 ;
 𝑒𝐸 :−;  𝑚𝑀 ;  𝑛𝑁 ;

  𝜆𝑡, , 𝜇𝑡   (x)    

         =  
Γ(𝜌)

Γ(𝜌−𝛼)
  𝑥𝜌−𝛼−1 𝐻

𝐴: 1;𝐶:𝐷
𝐸: 1;𝑀;𝑁

 
 𝑎𝐴 : 𝜌;  𝑐𝐶 ;  𝑑𝐷 ;

 𝑒𝐸 :𝜌 − 𝛼;:  𝑚𝑀 ;  𝑛𝑁 ;
  𝜆𝑥, , 𝜇𝑥 , (7.4) 

where  𝑅𝑒 𝜌 > 0. 

8. Conclusion. The results obtained in this paper are of  general character and  results for  Mellin –Barnes 

type integrals and double  Mellin transforms of the functions Humbert‟ seven double hypergeometric 

functions 𝜙1 ,𝜙2 ,𝜙3 ,𝜓1 , 𝜓2, Ξ1, , Ξ2 [1,𝑝. 225 − 226 20 − 26 ; see also [8,pp.58-59]. Horn‟s double 

hypergeometric function 𝐻3,𝐻4 1,𝑝. 225  15,16  ,    and its confluent forms 𝐻6and 𝐻7[1,p.226(34.35)] 

are all special cases of the double hypergeometric function due to Exton defined by (1.1) and can be 

deduced  as special cases of  findings of  the paper. Riemann-Liouville fractional integrals of Humbert‟ 

seven double hypergeometric functions etc. can be derived as special cases of  (6.5) sand (6.6). 
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Abstract 

 

Hyperchaotic systems are those which evolve chaotically for certain set of parameter values and 

are containing at least two positive Lyapunov exponents. Hyperchaotic systems show complex 

dynamic behavior. We have studied here complexities in discrete type hyperbolic systems and 

used proper numerical simulation to obtain Lyapunov exponents, topological and correlation 

dimension. Positivity of Lyapunov exponents shows chaotic motion. Measure of topological 

entropy provides information that how complex the system is. Correlation dimension provides 

the dimensionality of the chaotic attractor. In the processes of investigation, we have drawn the 

bifurcation diagrams and other interesting graphics to support the evolutionary phenomena. 

 

1. Introduction: 

Though there does not exist a unique definition of complexity, however, we can say a system is 

complex if different parts comprising the system interact with each other in multiple ways. Study 

of complexity means information that are emerging from a collection of interacting parts. 

Complexity expresses a condition of numerous elements in a system and numerous forms of 

relationships among the elements. Usually biological systems are complex and multicomponent. 

They are spatially structured and their individual elements possess individual properties. Such 

complexity also effects the system significantly during evolution. In recent years there has been a 

great emphasis on three concerning phrases: nonlinear dynamics, chaos, and complexity. All 

natural systems exhibit massive diversity in behavior during evolution. Complex systems are 

characterized by an internal structure which is built by numerous and varied processes, 

subsystems and interconnections.  Systems featured by complexity display a number of 

properties such as uncertainty, interactions at different levels, self-organization and nonlinear 

feedback. Due to its nonlinear structure such systems may display the properties like complexity 

and chaos. Elaborate descriptions on complexity can be viewed from some well written articles 

[1 – 6]. Chaos in the system can be better understood by measuring Lyapunov exponents (LCEs), 

positive LCEs signifies chaos whereas its negative measure means system evolution is regular, [7 

– 10].For physical systems, complexity is a measure of the probability of the state vector of  
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the system. Presence of complexity in the system is measured by topological entropy; more 

topological entropy implies the system is more complex, [11–16]. 

Hyperchaotic systems are those which contain at least two positive Lyapunov 

exponentsthroughout a range of parameter space. Hyperchaotic systems are of higher 

dimensional, (i.e. dimension  3). Hyperchaotic attractors are importance in various flow pattern, 

[17–25].The discretized hyperchaotic map proposed by Rossler, [20], was obtained after taking 

Poincare cross-section of flow of a coupled 4 – D oscillator.   

The objective of the present study is based on 3 D folded towel map introduced in [20] which 

shows hyperchaotic properties. In the processes of investigation, we wish to perform stability 

analysis of fixed points at a particular parameter space and to do bifurcation analysis on the time 

evolution of this map. Also, we wish to extend our numerical simulation to obtain Lyapunov 

exponentsas measure of chaos, topological entropies as a measure of complexities as well as the 

dimension of the chaotic attractor for certain set of parameter values and initial conditions 

2. Mathematical Model, Fixed Points & Bifurcations: 

 

  nnn1n

nnn1n

nnnn1n

yb)z1(zrz

)xk1(]1)z21()yc([dy

)z21()y(cδ)x(1xax













    (1) 

The Jacobian matrix of system (1) be obtained as 

 

 

 
























zrz)(1rb0

y)(cx)k(1d2z)2(1x)k(1dz)]2(1y)(c1[kd

y)(cδ2z)2(1δxax)(1a

J  (2) 

The Jacobian matrix be utilized to determine stability of steady state solutions, i.e., fixed points, 

and to calculate the Lyapunov exponents for the evolving system. 

  

(a) Fixed Points and Stability: 

At parameter values a = 1.9, b = 0.3, c = 0.35, d = 0.1, r = 3.7,  = 0.05, k = 1.9, one obtains the 

following five fixed points of system given by:  

P1*(-1.10, 53.14, 1.11), P2*(0.48, -0.001, 0.73), P3*(-0.01, -0.02, 0.73),  

P4*(0.45, -0.01, 0.00), &P5*(0.02, -0.07, 0.001) 

 

Through stability analysis it has been obtained that all above fixed points are unstable. Therefore, 

orbits originating nearby these fixed points could be unstable orbits also. 

 

(b) Bifurcations: 
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Bifurcations in the system provide a qualitative change in the behavior of the system during 

evolution. Bifurcations occur when a particular parameter is allowed to vary within its certain 

range of values while keeping other parameters constant. We observe different cycles of 

evolution that leading to chaotic state during the processes of bifurcation. Also, for some cases, 

phenomena like bistability, periodic windows within chaos etc. may also be observed for some 

systems. A bifurcation can be taken as a tool to analyze the regular, chaotic as well as 

complexity within the system. Bifurcation diagrams for system (1) is shown in Fig. 1. We 

observe here, how the stable solution evolve into chaotic after period doubling phenomena. 

Within chaos, there are periodic windows, a special characteristics of nonlinear systems. The 

bifurcations shown in Fig. 1 for parameters b = 0.03, c = 0.35, d = 0.1, r = 3.5,  = 0.05, k = 1.9 

and 2.0  a  3.8 in  upper diagrams and 3.55  a  3.65 in lower diagrams. 
 

 

  

  
Fig. 1: Bifurcation diagrams for map (1) along x and y directions when b = 0.03, c = 0.35, d = 0.1, 

 r = 3.5,  = 0.05, k = 1.9 and 2.0  a  3.8 in  upper diagrams and 3.55 a  3.65 in lower diagram. 

 

2. Numerical Simulations: 

(a) Chaotic Attractor: 

The map (1) evolve chaotically of map during evolution. For parameter valuesa = 1.9,b = 0.03,  

c = 0.35, d = 0.1, r = 3.5,  = 0.05, k = 1.9. Strange chaotic attractor appear for an orbit with 

initial conditions (x0, y0, z0) = ( 0.3, -0.1, 0.1) as shown in Fig. 2. This attractor is of folded type 

and is a dense chaotic set having fractal structure. 
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Fig. 2: Sows a folded towel map type chaotic attractor obtained when a = 1.9,b = 0.03, c = 0.35,  

d = 0.1, r = 3.5,  = 0.05, k = 1.9 and initial conditions (x0, y0, z0) = ( 0.3, -0.1, 0.1). 

 

(b) Calculations of Lyapunov Exponents (LCEs): 

Lyapunov exponents are perfect indicators of regular and chaotic motion. These are positive for 

chaotic evolution and negative for regular motion. For map (1), we have calculated LCEs, by 

using appropriate procedure, [7 – 10, 16, 27, 28]. Plots of LCEs are shown in Fig. 3. 

 

 
 Fig 3: Plots of Lyapunov exponents for  a = 1.9,b = 0.03, c = 0.35, d = 0.1, r = 3.5,  = 0.05, k = 1.9 
                and initial conditions (x0, y0, z0) = ( 0.3, -0.1, 0.1). 

 

(c) Topological Entropies: 

The system (1) is very complex and can be viewed as that composed on many components which 

may interact with each other. During evolution, in addition to chaos, it may show some degree of 

spontaneous order, numerosity and robustness. Complexity in the system is measured by 

topological entropy which can be calculated statistically in the following way: 

 

Consider a finite partition of a state space X denoted by P = { A1, A2, A3,. . . . , AN}. Then a 

measure μ on X with total measure μ(X) = 1 defines the probability of a given reading as  

    pi = μ(Ai ) , i = 1, 2, . . , N.   

 

 Then the entropy of the partition be given by 

  



N

0i

ii plogp)p(H       (3) 
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The topological entropy, H ( p ) is a positive quantity and more topological entropy of a system signifies 
it is more complex. 

Presence of complexity does not mean the system is chaotic and vice versa. In Fig. 4, we have 

plotted topological entropy for our system for b=0.03, c= 0.35, d= 0.1, r= 3.7, =0.05, k = 1.9  

and varying parameter a, (2.0 a 3.8& 3.0 a 3.5). For both the cases, the initial conditions are 

x = 0.3, y = 0.1 and z =  0.1. 
 

 
Fig. 4: Plots of topological entropy of the systemfor b=0.03, c= 0.35, d= 0.1, r= 3.7, =0.05,  

k = 1.9  and varying parameter a, (2.0 a 3.8& 3.0 a 3.5). 

 

(d) Correlation Dimension: 

Correlation dimension provides the measure of dimensionality of the chaotic attractor. This is 

calculated statistically with the application of Heavyside function, [16, 26]. To obtain this, first 

we have calculated data for correlation integral C(r), for certain r. Then, we have plotted the 

curve 
rlog

C(r)log
 against r shown in Fig. 5. After this, we have applied a linear fit criterion to the 

correlation data and obtained the equation of the straight line 

 y = 0.535196  0.571383 x      (4) 

The y-intercept of this straight line is 0.57066 and so, [16], the correlation dimension of the 

chaotic attractor Fig. 2(a) is, approximately, given by Dc 0.535. 
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 Fig. 5: Plot of correlation integral data 

 

 

 

 

 

 

Discussions: 

Starting from the bifurcation plots, Fig. 1, and those plots of topological entropy, Fig.4, we can 

observe the presence of complexity in the system. Also, we find increasing in topological when 

the system evolution is regular, (e.g. 2.0 a 3.2). This implies, even if the system is regular, it 

may exhibit complexity. The correlation dimension of the chaotic attractor is obtained as  

Dc0.535. This shows the fractal property of the chaotic attractor.  
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Abstract: 

A prey-predator system with Allee effect has been studied for chaotic evolution and for 

complexity behavior. Stability criteria of fixed points have been explained analytically. 

Bifurcation diagrams have been obtained to analyze the evolutionary phenomena. Regular and 

chaotic attractors have been obtained. Numerical simulations have been done to obtain plots for 

Lyapunov exponents (LCEs) which definitely provide regular and chaotic motions. This study 

further extended to obtain topological entropies and to explain complexities present within the 

system. Correlation dimension is also obtained for the dimensionality of the chaotic attractor. 

Interesting graphics are drawn in the processes of study. 

 

1. Introduction: 

Most of the biological systems in nature exhibit enormous diversity and structurally 

multicomponent. The dynamics of such systems are interesting because during evolution, they 

show chaos and show complexity phenomena. Investigation of dynamic evolution of these 

system is enables us to find the reasons of extinction of certain species or unbalance in such 

systems.There has been significant number of articles appeared recently on dynamics of prey-

predator and other biological populations under different conditions, [1 – 4].Results emerging 

from these studies are important and encouraging. Prey-predator problems has been a great 

emphasis over recent years, [5 – 8], where efforts have been made to study evolution under 

various conditions of equilibrium of two species. 

The Allee effect on prey-predator system is a phenomenon in biology which characterizes certain  

correlation between population size or density and the mean individual fitness, (often measured 

as per capita population growth rate), of a population or species, [9 – 12]. In this regard some, 

discrete models of prey-predator systems with Allee effect, appeared recently are interesting, [13 

– 15]. These studies are confined to stability of equilibrium solutions and bifurcation phenomena 

showng appearing of chaos.  
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The objective of the present study is to investigate complexity and chaotic evolution in prey-

predator system resulting due to Allee effect. Stability of fixed points at certain parameter space 

are studied in the process of study. Bifurcation diagrams and other numerical simulations are 

performed  for different cases: (i) without Allee effect, (ii) Allee effect on Prey population only, 

(iii) Allee effect on predator population only and (iv) Allee effect on both, prey and predator, 

population. 

2. Discrete Prey-Predator Model: 

Most commonly used a prey-predator model can be represented as  

 
)yx(yayy

yxa)x(1xrxx

nnnn1n

nnnnn1n









    (1) 

Where nx  and ny are, respectively, the densities of prey and predator populations at generation

n ; parameters r and a are positive constants, a  stands for the predation parameter and r is the 

natural rate of increase in prey population. The terms of model (1) can be interpreted as follows: 

 )x(1xrx nnn   represents the rate of increase of prey population in absence of 

predator 

 nn yxa represents the rate of decrease in prey population due to predation 

 )yx(yay nnnn  represents variation of predator density due to prey population 

With Allee effect on both, prey and predator population, model (1) can be modified as  
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Here,    

 
nxε

e1


 stands for mate finding Allee effect on prey population, here ε  isdefined as the 

Allee effect constant and the term  

 
n

n

yμ

y


stand for the Allee effect on predator and here, μ  is Allee effect constant. Bigger μ  

means the stronger the Allee effect on predator population. 

Jacobian matrix for system (1) obtained as  
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The Jacobian matrix for system (2) obtained as  



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Jacobian matrices 0J  and 1J  play important role during measurement of Lyapunov exponents 

(LCEs), when the system evolves over time. Here, matrix 0J has been used when there is no 

consideration of Allee effect and, similarly, matrix 1J when Allee effect are applied on both 

populations. Also, when only prey population is subject to Allee effect or same in case of 

predator population, one has to re-calculate the Jacobian matrix to obtain LCEs for 

corresponding cases. 

For values of parameters 2.0,a 2.4,r fixed points of system (1) are obtained, approximately, 

as ),00,(P1

 ),01,(P2


)0.5454550.545455,(P3

 and by using stability analysis, we find all are 

unstable. 

Bifurcation Diagrams: 
The phenomena of bifurcation provide a qualitative change in the behavior of a system during evolution. 
Such a change occurs when a particular parameter is allowed to vary while keeping other parameters 
constant. Bifurcation diagrams show the splitting of a stable solutions within a certain range of values of 
the parameter. During the processes of bifurcation, one observes different cycles of evolution which 
leading to the chaotic situation. Phenomena like bistability, periodic windows within chaos etc. may also 
be observed for some systems. A bifurcation can be taken as a tool to analyze the regular, chaotic as 
well as complexity within the system.  
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Fig. 1: Bifurcation diagrams for 2.0a  and Fig. 1(a) : 2.4r1.8  ,Fig. 1(b) : 4.5ε  .   2.4r1.8 

Fig. 1(c) : 0.1,μ  2.6r2.2  ,Fig.1(d) : 0.1,μ,4.5ε  3.2r2.6   

In Fig. 1, we have presented bifurcation diagrams for the cases: no Allee effect, Allee effect on prey only, 

Alle effect on predator only and Allee effect on both populations. 

 

3. Numerical Simulations: 

(a) Attractors: 

Keeping parameters a and r fixed, (a = 2.0, r = 2.4), attractors for different cases are obtained 

through numerical technique, Martelli, [16], and shown in Fig. 2. 

Til Prasad Sarma and L. M. Saha /Complexity Investigation In Prey-Predator … 



23 |  

 

 

 

 Fig. 2: Plor of regular and chaotic attractors for 2.4r2.0,a   and; (i) plot (a) without Allee 

effect, (ii) plot (b) with Allee effect on prey only, 4.5ε  , (iii) plot (c) Allee effect on predator 

only 0.1μ  , and (iv) plot (d) Allee effect on prey as well as on predator, ε = 4.5, 0.1μ  . 

 

Looking plots of attractors of Fig. 2, one finds a chaotic attractor, figure (a) when Allee effect is 

not in consideration, for 2.4r2.0,a  . But, when Allee effect is applied to either of the 

population or to both population, system returned to regularity.Attractors shown in figures (b), 

(c) and (d) are no more chaotic. This also follow from the plots of LCEs given below. 

 

(b) Lyapunov Exponents (LCEs): 

To indicate chaotic and regular evolution, an appropriate measure is to find Lyapunov exponents,  

LCEs, are obtained for different cases by using appropriate procedure, [16 – 21]. Plots of LCEs 

are shown in Fig. 3. 
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Fig. 3: Plots of Lyapunov exponents for 2.4r2.0,a   and (i) figure (a) without Allee effect,  

(ii) figure (b) with 0μ,4.5ε  ,  (iii) figure (c) Allee effect on predator only with 0.1μ  ,  

(iv)Allee effect on both population 0.1μ,4.5ε  .  

 

(c) Correlation Dimension: 

Correlation dimension provides the measure of dimensionality of the chaotic attractor. This is 

calculated statistically with the application of Heavyside function, [16, 17].To obtain this, using 

the technique in [16], first we have calculated data for correlation integral C(r), for certain r, 

(other than the parameter shown in the models (1) & (2)). Then, we have plotted the curve 

rlog

C(r)log
 against r shown in Fig. 4. After this, we apply a linear fit criterion to the correlation 
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  Fig. 4: Plot of correlation integral data. 

data and obtained the linear fit equation 

 y = 0.57066 – 0.640236 x 

The y-intercept of this straight line is 0.57066 and so, [16], the correlation dimension of the 

chaotic attractor Fig. 2(a) is, approximately, given by Dc 0.571. 

(d) Topological Entropies: 

As explain in the beginning, topological entropy measures the complexity of the system. More 

topological entropy implies system is more complex. Presence of complexity does not mean the 

system is chaotic and vice versa. In Fig. 5, we have plots of topological entropy for different 

cases. In figure (a), topological entropy increases for r > 2 but bifurcation diagrams and 

calculations of LCEs indicate the system is regular within 2.0 r  2.2. Similar observation can 

be made looking figures (b) and (c). In figure (d) one finds no fluctuations of topological 

entropy, it establishes a steady state situation. 
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Fig. 5: Plots of topological entropies for 2.0a   and 2.6r1.8  : (i) figure (a) with no Allee 

effect, (ii) figure (b) when ε = 4.5,  = 0, figure (c) with Allee effect on predator only 0.1μ  , 

(iv)when 0.1μ,4.5ε   

4. Discussions: 

The results obtained through bifurcation plots, Fig. 1, and those of LCEs plots, Fig.3, show that 

the Allee effect stabilize the motion from chaos to regularity. With Allee effect, LCEs are 

negative in all cases, where these were positive without this effect. The correlation dimension of 

the chaotic attractor is obtained asDc 0.571. Also, in this study we find the existence of 

complexity within the system, Even when system behavior is regular, we find significant amount 

of increase in topological entropy.This implies the fact that the system may be regular but may 

exhibit complexity.  
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Abstract 

During the World Mathematics Year 2000, it was recommended that the 

publication of research papers and text books in mathematics should be 

professional.   We explain professionalism in the context of writing in science / 

technology / mathematics.   In this paper, we confine to certain anathemas or 

lapses in mathematics presentation: Megalomania, symbol as the starter of a 

mathematical sentence, passive voice, obvious claims, prolixes,and cluttering 

indices in tensors. We give the rectification of each anathema, by citing the 

professional counterpart.   These discussions on professionalwritings will help the 

researchers to improve the quality of their publications to suit the 21st century 

demand of professionalism in mathematical writing. 

1. Introduction 

Evolution of mathematics as a world-wide industry:  Mathematics was a 

cottage industry – managed by a few amateurs - before the 20th century.  

Later on during the years 1901-2000 A.D.researchers have transformed 

mathematics into a world-wideindustry, needing the services of an army of 

professionals videthe presidential address of the World Mathematics Year 

2000 by Sir Michael Atiyah in Mathematics: Frontiers and Prospects, 

American Mathematical Society, p. viii, 2000.  This implies that 

professionalism in reporting of research is essential in the 21st century due 

to the exponential proliferation of mathematics:  63 Primary subjects and 

7000 Subsidiary subjects (American Subject Classification Scheme 2010).  

The first book on professional writing in mathematics was published in 

2013, by this author, under the title 
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 “Write Mathematics Right: 
Principles of Professional Presentation, 

Exemplified with Humor and Thrill.” 
The international edition of the book was published by Alpha Science 
International Ltd, Oxford, U. K. and the Indian edition is due to Narosa Publishers   
Delhi.  For details see www.alphasci.com and www.narosa.com.  

 
2.  Professionalism in Mathematics Writing 

In the context of scientific / technical / mathematical writing, we 
exemplify the word ‘professionalism’ to connote the three types of pleasantness: 

• Etiquettes - pleasantness to the professional colleagues like authors, 

editors, referees and researchers – accelerate publishability 
• Euphony - pleasantness to the ears of the audience - promotes speakability 
• Elegance – pleasantness to the eye and the mind of the reader - enhances 
readability and printability of research. 
In the book Write Mathematics Right, 142 explicit principles of professional 
writing are constructed that help a researcher avoid 142 types of mistakes in his 
thesis/ publications.  On the said book, Cristin Zanella an editor of the American 
Mathematical Society, U. S. A.,opined:  

Important reasoned guidance to the mathematical authors. 
Stephen Chang, the Director of Alpha Science International, Oxford, U.K. 
commented that the book is an important database. 

3. Anathemas (Casual Writings) & 
Their Replacement (Professional Writing) 

 
[A] Etiquettes 

Etiquettes are rules of formal behaviour, which create pleasantness towards 
professional colleagues.  In fact, they are the international norms for good 
exposition nurtured in the literature.   

(i) Claim: Megalomania is an anathema in scientific writing: Something 
that is vehemently detested in the mathematics literature is referred as  

 

L. Radhakrishna                     /          Professional Writing in Mathematics … 



30 |  

 

 
(ii) a mathematical anathema.  Accordingly, megalomania - exaggerated 

importance of one’s self- is an anathema and so a distractor of 
etiquettes.  Thus, we have Principle of Professional Writing:Replace first 
person singular by first person plural to avoid megalomania. 

 

- Page 3 – 
 
Example of casual writing: I prove Theorem 5 on Page 10. 
Example of professional writing:  We prove Theorem 5 on Page 10. 
Remarks:(1) Here ‘we’ refers to the writer and the writee (reader). 
    (2) In reviews of research papers, short notes, in essays - where personal 
tastes matter - we can justify the use of “I”.    A research paper has to 
report impersonal reproducible results. 
 

(ii)Claim:The word ‘obvious’ is a mathematical anathema. 

Casual writing: It is obvious that 4 cannot be the 4th term in the 
sequence                          <4, 8, 12, …>. 
Professional writing: In the sequence         

<4, 8, 12,⋯, 4n +(-2) (n- 1) (n – 2) (n – 3) + ⋯> 
the 4th term is 4. 
Verification: Let the general term of the sequence be denoted by 

𝑡𝑛 =    4𝑛 +  −2  𝑛 − 1  𝑛 − 2  (𝑛 − 3).   [1] 
When we substitute n = 4 in [1], we have 

𝑡4= 4.4 + (- 2). 3. 2.1= 4. 
Consequently we can present the sequence as  

<4, 8, 12, 4,  ⋯ , 4𝑛 +  −2  𝑛 − 1  𝑛 − 2  𝑛 − 3 , ⋯ >. [2] 
Note: If the general term would have been given as𝑡𝑛  = 4n, then we 
gett4 = 16, and the sequence is      

<4, 8, 12, 16,⋯, 4n, ⋯> . 
Remark: (1) Mathematics is an exact science and so needs proof of 
every claim! For a sequence, the form of the general term 
isessential.Knowledge of the first three terms is not sufficient, to 
determine the whole  sequence!  
                  (2) In casual writing, ‘it is obvious’ is an impersonal 
statement. This is not a responsible statement, as there is no proof. 
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[B] Euphony 

(i) Claim: Symbol as a sentence starter is an anathema 
Principle of professional writing: A mathematical sentence should not 
start with a symbol, but with the clarification of the symbol. 
(i)Casual writing: F is a very intricate mathematical object and is just 
the sort of thing that mathematicians delight in.  

- Page  4 – 
Professional writing: The Cantor set F is a very intricate mathematical object and 
is just the sort of thing that mathematicians delight in. 

Remark: Thereading of casual writing (starting with F) jars the ear 
right in the beginning, which is not pleasant to the ear.   This does not 
contribute to euphony.  Professional writing starts with the explanation of F 
and thus contributes to pleasantness to hear, that is euphony. 
 

(ii)    Use of passive voice is an anathema in writing 

 Principle of professional writing:  For a lively and persuasive style use active 
voice. 

Casual writing:“ Every infinite set of real numbers is in one-to-one 
correspondence with  either the set of natural numbers or else the setoff all 
reals” was asserted by the Continuum Hypothesis. 

Professional writing:The Continuum Hypothesis assertsthat ‘every infinite set of 
realnumbers is in one-to-onecorrespondencewith either the set of natural 
numbers or else the set of all reals’. 

Remark: Usage of neutral subject like “Continuum Hypothesis” facilitates the 
avoidance of passive voice. 

 
[C]Elegance 

(i) Claim: Clutter of free indices in tensors is an anathema 

Principle of Professional Writing:  For clarity, in printing of tensors choose b, d, h, 
k, t (letters extending above the line of print) as the superscripts and g, j, p, q, y as 
subscripts (letters extending below the line of print). 
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Casual writing:We characterize the curvature of space-time by the Riemann-
Christoffel tensor field  

𝑅𝑕𝑘
𝑝𝑞

       (p, q, h, k = 1,2, 3, 4). 

Professional Writing:We characterize the curvature of space-time by the 
Riemann-Christoffel tensor field 

𝑅𝑝𝑞
𝑕𝑘        (p, q, h, k = 1,2, 3, 4). 

Remarks: By choosing the free indices p, q, h, k as inprofessional writing, we 
improve the appearance and ease of reading the tensor. The clutter of indices - an 
anathema - in the casual writing is easy to recognise, when hand written! 

- Page 5 – 
(iii) Claim: Prolixes in Proofsare an anathema. 

Introduction:In long derivations, especially in research papers/theses, the non-
technical words 

‘since’, ‘hence’, ‘get’ 
appear and reappear.   In order to escape the monotony of repetition, we list 
below some alternate words – synonyms/elegant variations – to the three words.    
Not all the synonyms in thesaurus – converse of dictionary – are elegant.  Long 
synonyms are called prolixes which are unpopular in mathematical writing. 

[1] Synonyms of the adverb ‘hence’:  therefore, consequently, it follows that, so, 
accordingly, thus. 

Prolixes (long synonyms) of ‘hence’: as a result of, there for, wherefore, whence, 
thence, in consequence, for this reason, ergo (Latin). 

[2] Synonyms of the conjunction ‘since’; because, as. 

Prolixes for ‘since’: on account of, in view of, in view of the fact that, in 
consideration of, for the reason that, by virtue of. 

*3+ Synonyms of the verb ‘get’: obtain, find, derive, arrive at, reach, gain, achieve. 

Prolixes for ‘get’:  beget, proliferate, procure, acquire, deduce, secure, approach, 
and pop up (colloquialism). 

Casual writing: Use prolixes in proofs/ deductions. 
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Professional writing: Use short synonyms in proofs/ deductions. 

Note: For technical words like set, group, ring, field thereare no 
synonyms/prolixes. 
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Abstract: This paper aims at some representations of generalized Voigt functions due to 

Klusch [3], M.A. Pathan and  M.J. Shahwan [6] and M.A.Pathan [5] and their extensions in 

terms of series and integrals which are especially useful in situations when the parameters 

take on particular values. Explicit representations of these functions are given in terms of 

familiar special functions of one and two variables. The Voigt integrals and series resulting 

in connections with the Lommel, Struve, Laguerre and parabolic cylinder functions and 

ultimately the Kampe de Feriet functions will follow as natural consequences for analytical 

evaluations and uses. 

Keywords: Voigt function, Bessel function, parabolic cylinder function, hypergeometric 

function and Laguerre polynomials. 

AMS Subject Classifications: 

1. Introduction 

The familiar Voigt functions 𝐾 𝑥,𝑦  and 𝐿 𝑥,𝑦 occur in great diversity in astrophysical 

spectroscopy, neutron physics, plasma physics, physics of stellar atmospheres, probability  

and statistical communication theory, as well as in some areas of mathematical physics and 

engineering. Representations (integrals and series) of the Voigt functions have been given by 

number of workers, for examples, Srivastava and Miller [12], Srivastava, Pathan and 

Kamarujjama [13], Pathan, Kamarujjama and Alam [7], Klusch [3] and Pathan and  

Shahwan [6] etcetera. 
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We begin by recalling here the following representations (see  [4],[5] and [8]) 

𝐾 𝑥,𝑦 =
1

 𝜋
 exp  −𝑦𝑡 −

1

4
𝑡2 cos 𝑥𝑡 𝑑𝑡

∞

0
(𝑥 ∈ 𝑅;𝑦 ∈ 𝑅+) (1.1) 

and  

𝐿 𝑥,𝑦 =
1

 𝜋
 exp  −𝑦𝑡 −

1

4
𝑡2 sin 𝑥𝑡 𝑑𝑡

∞

0
(𝑥 ∈ 𝑅;𝑦 ∈ 𝑅+)(1.2), 

so that  

𝐾 𝑥,𝑦 ± 𝑖𝐿 𝑥,𝑦 =
1

 𝜋
  exp[
∞

0
−  𝑦 ∓ 𝑖𝑥 𝑡 −

1

4
𝑡2] 𝑑𝑡 = exp  𝑦 ∓ 𝑖𝑥 2  1 − 𝑒𝑟𝑓⁡(𝑦 ∓

𝑖𝑥) (1.3),                                       

where the error function 𝑒𝑟𝑓(𝑧) is given by (see Srivastava and Kashyap ([14]; p. 17 (71)) 

 

𝑒𝑟𝑓 𝑧 =
2𝑍

 𝜋
𝐹1  

1

2
 ;  

3

2
 ;  −𝑧2 =

2𝑍

 𝜋
exp −𝑧2 𝐹11   1 ;  

3

2
 ;  𝑧2 1   𝑍 < ∞ (1.4) 

and 𝐹11  is the familiar confluent hypergeometricfunction Erdelyi et al ([1]; p. 248,Eq.6.1(1)). 

An obvious error in the expression 𝐾 𝑥,𝑦 + 𝑖𝐿 𝑥,𝑦  has been corrected by Srivastava and 

Miller [12] 

(see also Srivastava and Chen [10]).The reader‟s attention is also drawn toward the clearly-

stated 

comments and observations about the inaccurate and incorrect developments surrounding 

the 

papers dealing with Voigt functions listed in [10, 13]. These comments and observations 

were first made 

by Srivastava and Chen ([10]; p. 69 (footnote)) reiterated in ([13], p. 50 and p. 53].  

For the Bessel function 𝐽𝜐of the first kind (and of order 𝜐), defined by 

𝐽𝜐 𝑧 =  
(−1)𝑚 (𝑍 2 )𝜐+2𝑚

𝑚 !  Γ(𝜐+𝑚+1)

∞
𝑚=0   𝑍 < ∞ (1.5), 

it is well known that 

𝐽
− 

1

2

 𝑧 =  
2

𝜋  𝑍
cos⁡(𝑧)    and    𝐽1

2

 𝑧 =  
2

𝜋  𝑍
sin⁡(𝑧)(1.6). 

Motivated by the relationships (1.6), Srivastava and Miller ([12], p.113 (8)) introduced and 

studied systematically an unification (and generalization) of the Voigt functions 𝐾 𝑥,𝑦  

and 𝐿 𝑥, 𝑦  in the form: 
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𝑉 𝜇 ,𝜐 𝑥,𝑦 = ( 
𝑥

2 
)

1

2  𝑡𝜇 exp  −𝑦𝑡 −
1

4
𝑡2 𝐽𝜐 𝑥𝑡  𝑑𝑡

∞

0
(𝑥,𝑦 ∈ 𝑅+; Re(𝜇 + 𝜐) > −1)                 

(1.7), 

 

so that 

𝐾 𝑥,𝑦 = 𝑉1

2 
 ,− 

1

2

 𝑥, 𝑦  and 𝐿 𝑥,𝑦 = 𝑉1
2 

 ,   
1
2

 𝑥,𝑦   (1.8). 

Subsequently, following the work of Srivastava and Miller [12] closely, Klusch [3] proposed  

unification (and generalization) of the Voigt functions 𝐾 𝑥,𝑦  and 𝐿 𝑥,𝑦  in the form: 

 

𝐾 𝑥,𝑦, 𝑧  =
1

 𝜋
 exp −𝑦𝑡 − 𝑧 𝑡2 cos 𝑥𝑡 𝑑𝑡
∞

0
(𝑥 ∈ 𝑅;𝑦, 𝑧 ∈ 𝑅+)(1.9) 

and  

𝐿 𝑥,𝑦, 𝑧 =
1

 𝜋
 exp −𝑦𝑡 − 𝑧 𝑡2 sin 𝑥𝑡 𝑑𝑡
∞

0
(𝑥 ∈ 𝑅;𝑦, 𝑧 ∈ 𝑅+)(1.10), 

so that 

𝐾 𝑥,𝑦, 𝑧 ± 𝑖𝐿 𝑥,𝑦, 𝑧 =
1

 𝜋
  exp[
∞

0

−  𝑦 ∓ 𝑖𝑥 𝑡 − 𝑧𝑡2] 𝑑𝑡  

=
exp⁡[(𝑦 ∓ 𝑖𝑥)

2
 ]

2 𝑧
 1 − 𝑒𝑟𝑓  

𝑦  ∓ 𝑖𝑥

2 𝑧
  (1.11), 

 

Klusch [3] proposed a unification (and generalization) of the Voigt functions𝐾(𝑥, 𝑦, 𝑧) and 

𝐿(𝑥,𝑦, 𝑧)in the form: 

Ω𝜇 ,𝜐 𝑥, 𝑦, 𝑧 =  
𝑥

2
 

1
2
 𝑡𝜇 exp⁡(−𝑦𝑡 − 𝑧𝑡2)𝐽

𝜐
 𝑥𝑡 𝑑𝑡

∞

0
 𝑥, 𝑦, 𝑧 ∈ 𝑅+;𝑅𝑒 𝜇 + 𝜐 > −1 (1.12), 

so that 

Ω1

2
,− 

1

2

 𝑥,𝑦, 𝑧 = 𝐾(𝑥,𝑦, 𝑧)and Ω1

2
,
1

2

 𝑥,𝑦, 𝑧 = 𝐿(𝑥,𝑦, 𝑧)(1.13). 

Relationship (1.12) can indeed be used to obtain many of Klusch's results [3] for 

Ω𝜇 ,𝜐 𝑥,𝑦, 𝑧  and those given by Srivastava and Miller [12] by taking 𝑍 =
1

4
 . 
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Recently, M.A. Pathan and M.J.S. Shahwan [6] defined an extension of     V𝜇 ,𝜐 𝑥,𝑦  in 

the form 

Ω𝜇 ,𝛼 ,𝛽 ,𝜐 𝑥,𝑦 =  
𝑥

2
 𝑡𝜇 exp  −𝑦𝑡 −

1

4
𝑡2 

∞

0
1F2 𝛼 ;  𝛽, 1 + 𝜐;  −

𝑥2  𝑡2

4
  𝑑𝑡 

(𝜇, 𝑥, 𝑦 ∈ 𝑅+; Re(𝜇 + 𝜐) > −1)(1.14). 

Finally, M.A. Pathan [4] has  given a generalization of  Ω𝜇 ,𝜐 𝑥,𝑦, 𝑧  in the following form: 

   Ω𝜇 ,𝜐
 𝑗  

(𝑥, 𝑦, 𝑧) =  
𝑥

2
 𝑡𝜇 exp⁡(−𝑦𝑡 − 𝑧𝑡𝑗)𝐽

𝜐
 𝑥𝑡 𝑑𝑡

∞

0

 

(𝑗 ∈ 𝑍+;  𝑥, 𝑦,𝑍, 𝜇 ∈ 𝑅+;  Re(𝜇 + 𝜐) > −1)(1.15). 

The purpose of the paper is to provide a natural further step toward the extension of the 

generalized Voigt functions (1.14), (1.15) in the form  Ω𝜇 ,𝜐
 𝑗   𝑥, 𝑦, 𝑧 . Explicit representations 

of these functions in integral and series, resulting in connection with Lommel, Struve, 

Laguerre, parabolic cylinder functions and ultimately ending in the Kampe de Feriet 

function  [11] are presented. 

 

2.  An extension of  Ω𝜇 ,𝜐
 𝑗  

(𝑥, 𝑦, 𝑧)andΩ𝜇 ,𝛼 ,𝛽 ,𝜐 𝑥,𝑦  

     The function 

  Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 𝑗  

(𝑥, 𝑦, 𝑧) =  
𝑥

2
 𝑡𝜇 exp −𝑦𝑡 − 𝑧𝑡𝑗 
∞

0 1F2 𝛼 ;  𝛽, 1 + 𝜐;  −
𝑥2  𝑡2

4
  𝑑𝑡 

(𝑗 ∈ 𝑍+;  𝑥, 𝑦,𝑍, 𝜇 ∈ 𝑅+;  Re(𝜇 + 𝜐) > −1)(2.1), 

 

defines an extension of Eq. (1.15) and exhibits the fact that 

  Ω𝜇 ,𝛼 ,𝛼 ,𝜐
 𝑗  

(𝑥,𝑦, 𝑧) = Γ(𝜐 + 1)  
2

𝑥
 
𝜐

Ω𝜇−𝜐,𝜐
 𝑗 (𝑥,𝑦, 𝑧)(2.2) 

 

or, equivalently that 
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  Ω𝜇 ,𝜐
 𝑗  

(𝑥,𝑦, 𝑧) =
 
𝑥

2
 
𝜐

Γ(𝜐+1)
 Ω𝜇+𝜐 ,𝛼 ,𝛼 ,𝜐

 𝑗  
(𝑥,𝑦, 𝑧)(2.3). 

We recall   ([9]; p. 108(1))  that,    ,𝐽𝜐 𝑧 =
 
𝑥
2
 
𝜐

Γ(𝜐+1)
𝐹10  −;𝜐 + 1;−

𝑧2

4
 ,(2.4) 

where 𝐹10  is hypergeometric function [9]. 

In fact, when   𝛼 = 𝛽,  Bessel functions    𝐽𝜐 𝑧  defined above by (2.4) and 1F2   are contained 

as special cases   in the generalized  hypergeometric function ([11]; p. 29(4)). 

On the other hand, taking 𝑧 =
1

4
 and 𝑗 = 2, Eq. (2.1) reduces to Eq. (1.14).Clearly, we have 

Ω𝜇 ,𝛼 ,𝛽 ,𝜐 𝑥,𝑦 = Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 2 

(𝑥, 𝑦,
1

4
 )(2.5) 

and 

V𝜇 ,𝜐 𝑥,𝑦 =
 
𝑥
2
 
𝜐

Γ(𝜐+1)
Ω𝜇+𝜐,𝛼,𝛼,𝜐
 2 (𝑥,𝑦,

1

4
 )(2.6) 

 

3. Explicit representation for Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 𝑗  

(𝑥, 𝑦, 𝑧) 

The well-known Hankel exponential integral  

 

 𝑡𝜇−1 exp −𝑝2𝑡2 𝐽ʋ 𝑥𝑡 𝑑𝑡 =         
Γ
 ʋ+ µ 

2
2𝑝µΓ ʋ+ 1 

 

∞

0

)(  
𝑥

2𝑝
)ʋ 𝐹11  

ʋ+ µ
2

;𝜐+ 1;−
𝑥2

4𝑝2
  

which, upon setting ʋ = 0 and µ = 2 reduces to the Weber's first exponential integral 

 

 𝑡 exp −𝑝2𝑡2 𝐽0 𝑥𝑡 𝑑𝑡 =      
1

2𝑝2
 exp(−

𝑥2

4𝑝2
 )   

∞

0

 

 

where  Re 𝜇 + ʋ > 0, Re 𝑝 > 0    and   0 < 𝑥 < ∞ . 

We can identify the above two integrals and perhaps some more unknown variants of  the 

classical exponential integrals including the following one 
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 𝑡𝑠−1 exp −𝑎𝑡𝜆 − 𝑏𝑡𝜇 𝑑𝑡 =

∞

0

 
 −𝑏𝑎

−𝜇
𝜆  

𝑟

 Γ(𝑠+ 𝜇𝑟)

𝜆𝑎
𝑠
𝜆𝑟! 

∞

𝑟=0

 

 Re 𝑠 > 0, Re (𝑎, 𝑏, 𝜆,𝜇 > 0    .    (3.1) 

This result can be easily established, in the usual way,  by direct expansion of the exponential 

functions and term wise integration with the aid of the Mellin transform. 

To obtain the various representations for the generalized Voigt function Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 𝑗   𝑥, 𝑦, 𝑧 ,we first 

use the series representation of 1F2 in (2.1) and integrate the resulting series term by term with the help 

of the result  

 𝑡𝜇  exp −𝑝𝑡 − 𝛽𝑡𝜆 𝑑𝑡 =

∞

0

 
 −𝛽 𝑟 Γ(𝜇+ 1 + 𝜆𝑟)

𝑟! 𝑝𝜇+1+𝜆𝑟

∞

𝑟=0

 

 Re 𝜇 + 1 > 0, Re 𝑝 > 0, Re 𝜆 > 0    , 

which is a special case of the result (3.1). We thus obtain 

 Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 𝑗   𝑥, 𝑦, 𝑧 =

 𝑥 
1
2

 2 𝑦 𝜇+1
 

 𝛼 𝑚  Γ(𝜇+𝑗𝑟+2𝑚+1)

 𝛽 𝑚  𝜐+1 𝑚  𝑚 ! 𝑟 !
∞
𝑚 ,𝑟=0  

−𝑥2

4𝑦2 
𝑚

 
−𝑧

𝑦 𝑗
 
𝑟

(3.2). 

This concept provides the basis of investigations and further extensions of Voigt and many other 

integrals by many mathematicians over the years. 

4. Special cases 

In this section we derive several representations of  Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 𝑗   𝑥, 𝑦, 𝑧  in terms of series and 

integrals which are specially useful in situations when the parameters take on particular values. 

Since in general, the Voigt function and hypergeometric functions  can be decomposed into a 

sum of two confluent hypergeometric functions or Whittaker functions of conjugate complex 

arguments, therefore the following special cases are worthy of note. 

I. Setting 𝑗 = 2  and then using Legendre's duplication formula ([11]; p.23(26)), Eq (3.2) 

would reduce to the following explicit expansions of the generalized Voigt function 

Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 2  𝑥, 𝑦, 𝑧 =

Γ(𝜇+1)

 𝑦 𝜇+1  
𝑥

2
𝐹

2: 1; 0

0: 2; 0
 
𝜇+1

2
,

𝜇+2

2
:

  − ∶

       𝛼;

𝛽, 𝜐 + 1;

−;

−;
−𝑥2

𝑦2
 ,

−4𝑧

𝑦2
 (4.1), 
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 where  𝐹
𝑝: 𝑞; 𝑟

𝑙: 𝑚; 𝑛
is called Kampe de Feriet hypergeometric functions of two variables ([6]; 

p. 63(16)). 

II. Taking  𝑧 =
1

4
, Eq. (4.1) reduces to ([6]; p.78(3.3)) which is given by M.A.Pathan and 

M.J.S.  

Shahwan.  

 

III. Taking𝑧 =
1

4
,replacing𝜇 by 𝜇 + 𝜐, letting 𝛼 = 𝛽, multiplying both sides of Eq.(4.1) by 

 
𝑥

2
 
𝜐

Γ(𝜐+1)
 and making useof Eq. (2.6), we get the following representation of Voigt function 

V𝜇 ,𝜐 𝑥,𝑦 

=
Γ(𝜇 + 𝜐 + 1)

Γ 𝜐 + 1  𝑦 𝜇+𝜐+1
 
𝑥
2
 
𝜐+ 1

2
𝐹

2: 0; 0

0: 1; 0
 

𝜇 + 𝜐 + 1

2
,

𝜇 + 𝜐 + 2

2
:         −;    −;  

        −: 𝜐 + 1;   −;

−𝑥2

𝑦2
 ,

−1

𝑦2
  4.2 , 

For 𝜇 = −𝜐 =
1

2
  and 𝜇 = 𝜐 =

1

2
 , formula (4.2) evidently reduces to representation of Voigt 

functions  

𝑘(𝑥,𝑦) and 𝐿(𝑥, 𝑦), respectively. 

IV. In Eq. (3.2), replacing 𝜇 by 𝜇 + 𝜐, letting 𝛼 = 𝛽, multiplying both sides by  
 
𝑥

2
 
𝜐

Γ(𝜐+1)
 

and making use of Eq. (2.3), we get a result of M.A. Pathan ([4]; p. 13(4.2)). 

V. Setting 𝑗 = 2, taking 𝛼 = 1,𝛽 =
3

2
 , replacing 1 + 𝜐 by 𝛽 and making use of ([8]; p. 

608(13)), then Eq. (2.1)yields to the following result 

  Ω
𝜇 ,1,

3

2
,𝛽−1

 2 
(𝑥, 𝑦, 𝑧) =

 𝜋

2
 
𝑥

2
 

1−𝛽

Γ(𝛽) 𝑡
𝜇−𝛽+

1

2 exp −𝑦𝑡 − 𝑧 𝑡2 
∞

0
𝐻
𝛽−

3

2

(𝑥𝑡)𝑑𝑡(4.3), 

where 𝐻𝜐 𝑧 =
 
𝑧
2
 
𝜐+1

Γ 
1
2
 Γ(𝜐+

3
2

)
   1F2 

                   1 ;
3

2
,   𝜐 +

3

2
;
−𝑧2

4
   is called Struve function ([11]; p.44(16)). 

Taking𝑧 =
1

4
, Eq. (4.3) reduces to a result of M.A. Pathan and M.J.S.Shahwan([6]; p.78(2.3)). 

VI. Setting 𝑗 = 2, taking 𝛽 = 𝛼 + 1, replacing 1 + 𝜐 by 𝛽 and making use of ([8]; p.608(13)), 

then Eq. (2.1)yields to the following result 
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  Ω𝜇 ,𝛼 ,𝛼+1,𝛽−1
 2 

(𝑥, 𝑦, 𝑧) = 2𝛽𝛼 Γ(𝛽) 𝑥 1−2𝛼 𝑡𝜇−2𝛼+1 exp −𝑦𝑡 − 𝑧 𝑡2 × 
∞

0

 

 2𝛼𝐽𝛽−1 𝑥𝑡  𝑆2𝛼−𝛽−1,𝛽−2 𝑥𝑡 − 𝐽𝛽−2 𝑥𝑡  𝑆2𝛼−𝛽 ,𝛽−1 𝑥𝑡   𝑑𝑡     (4.4), 

where 𝑆𝜇 ,𝜐 𝑧 =
 𝑧 𝜇+1

 𝜇−𝜐+1  𝜇+𝜐+1 
  1F2 

                           1;
1

2
 𝜇 − 𝜐 + 3 ,

1

2
 𝜇 + 𝜐 + 3 ;

−𝑧2

4
   is called Lommel 

function ([11]; p. 44(13)). Taking 𝑧 =
1

4
, Eq. (4.4) reduces to a result of M.A. Pathan  and M. J. 

S.Shahwan 

([6]; p.78(2.4)). 

  VII. Expand 1F2   in the integrand of (2.1) after letting 𝑗 = 2, then integrating the resulting  

(absolutely convergent) series term by term with the use of ([2]; p.416(24)), we get the 

following result 

Ω𝜇 ,𝛼 ,𝛽 ,𝜐
 2  𝑥, 𝑦, 𝑧 = Γ(𝜇 +

1) 𝑥 
1

2 8𝑧 
𝜇

2  
(𝜇+1)𝑚(𝛼)𝑚exp⁡(

𝑦2

2
)

(𝛽)𝑚 𝜐+1 𝑚   𝑚!
∞
𝑚=0  

−𝑥2

8 𝑧
 
𝑚

𝐷−𝜇−2𝑚−1  
𝑦

 2 𝑧
 (4.5), 

where 𝐷𝜐 𝑧  is the parabolic cylinder function ([11]; p. 40(29)). Taking 𝑧 =
1

4
 , Eq. (4.5) reduces 

to a result of M.A. Pathan and M. J. S.Shahwan ([6]; p.78(3.1)). 

VIII. It may be also interesting to observe here that by setting𝛼 = 𝛽, letting𝑦 → 0 in (4.5) and 

(2.1) 

(after taking 𝑗 = 2) and then equating the equations, we obtain 

 𝑡𝜇  exp −𝑧 𝑡2 
∞

0 0F1  −; 𝜐 + 1; 
−𝑥2𝑡2

4
 𝑑𝑡 =  2Γ(𝜇 + 1) 8𝑧 

𝜇

21F1 𝜇 + 1; 𝜐 + 1;
−𝑥2

8𝑧
 (4.6), 

On taking 𝑧 =
1

4
 , Eq. (4.6) reduces to 

 𝑡𝜇  exp  −
1

4
𝑡2 

∞

0 0F1  −; 𝜐 + 1; 
−𝑥2𝑡2

4
 𝑑𝑡 =  2 Γ(𝜇 + 1) 2 

𝜇

21F1 𝜇 + 1; 𝜐 + 1;
−𝑥2

2
 (4.7). 

 

5. Further representation of   Ω𝜇 ,𝜐 𝑥,𝑦, 𝑧  
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We derive several further representations of Voigt functions Ω𝜇 ,𝜐 𝑥,𝑦, 𝑧  in terms of series (single and 

double)  of product of Laguerre functions 𝐿𝑛
 𝛼 (𝑥)([11]; p. 41(33)) and parabolic cylinder 

functions 𝐷𝜐(𝑥) which are essentially useful in situations when the variable values being tacitly excluded 

in every case. Indeed, if we start from ([8]; p.412(13)) 

 𝑥𝑡 𝝊exp  −
1

4
𝑡2  

𝑡2𝑚𝐿𝑚
 𝜐−𝛼 

 𝑥2 

Γ 𝜐+𝑚+1 22𝑚+𝜐
∞
𝑚=0   1F1 𝑎; 𝜐 + 𝑚 + 1;

𝑡2

4
 = 𝐽𝜐 𝑥𝑡    (5.1), 

Expand 1F1  in series, multiply both sides by  
𝑥

2
𝑡𝜇 exp −𝑦𝑡 − 𝑧𝑡2 , integrate with respect to 𝑡 over 

the interval (0,∞) and then apply the definition of gamma function and making use of Eq. 

(1.12), we obtain the series representation 

Ω𝜇 ,𝜐 𝑥,𝑦, 𝑧 

=  
𝑥

2
 
𝜐+1

2
exp 

𝑦2

8𝑧 + 2
  

2
4𝑧+ 1

 

1
2

 𝜆

 
Γ(𝜆+ 2𝑚+ 2𝑛) 𝑎 𝑛  

2
4𝑧+ 1

 
𝑚+𝑛

 𝑛! 22𝑚+2𝑛 Γ 𝜐+𝑚+ 1  𝜐+𝑚+ 1 𝑛

∞

𝑚,𝑛=0

× 

𝐿𝑚
 𝜐−𝑎  𝑥2 𝐷−𝜆−2𝑚−2𝑛  

𝑦

 
4𝑧+1

2

 ,  𝜆 = 𝜇 + 𝜐 + 1    (5.2).         

For 𝑎 = 0 the formula (5.2) reduces to the following result 

Ω𝜇 ,𝜐 𝑥,𝑦, 𝑧 =  
𝑥

2
 
𝜐+1

2
exp 

𝑦2

8𝑧 + 2
  

2
4𝑧+ 1

 

1
2

 𝜆

 
Γ 𝜆+ 2𝑚  

2
4𝑧+ 1

 
𝑚

22𝑚 Γ 𝜐+𝑚+ 1 

∞

𝑚=0

 × 

𝐿𝑚
 𝜐  𝑥2 𝐷−𝜆−2𝑚  

𝑦

 
4𝑧+1

2

 ,  𝜆 = 𝜇 + 𝜐 + 1    (5.3).       

For 𝜇 = −𝜐 =
1

2
  and 𝜇 = 𝜐 =

1

2
 , formulae (5.2) and (5.3) evidently reduce to representations of 

generalized  

Voigt functions 𝐾 𝑥,𝑦, 𝑧  and 𝐿 𝑥,𝑦, 𝑧 , respectively. Taking 𝑧 =
1

4
 equations (5.2) and (5.3) reduce to a 

result 

of M.A. Pathan  and M. J. S.Shahwan ([6]; p.79(4.2) and (4.3)), respectively.  

 

Again, by appeal to the limiting cases by taking 𝑦 → 0 and 𝑧 =
1

4
 in equations (5.2) and (5.3),  

and adjusting the parameters, we obtain the results of Pathan, Kamarujjama and Alam ([7]; p. 256(3.4)).          

Furthermore, for 𝜇 =
1

2
 , 𝜐 = ±

1

2
  and 𝑧 =

1

4
, the equation (5.2) yields generalizations of the results  

([7]; p.256(3.5) to (3.8)).    
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ABSTRACT 

We have investigated C-field cosmology in Bianchi type-III space time with Bulk viscosity (dust 

distribution) and time dependent cosmological term. We assume the matter content of the universe is 

in the form of dust, which leads to p = 0. To get the deterministic model of the universe we assumed 

that  (shear) is proportional to  (expansion) which leads to B = Cn, where n is constant and B, C are 

metric potentials and   = constant as considered by Zimdahl. We find that the creation field (C) 

increases with time which matches with the result of H–N theory. The physical and geometrical aspects 

of the model are also discussed. 

Keywords : Cosmology, C-field, Bianchi - III , Bulk viscosity, Dust, Time dependent Λ 
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Bianchi type cosmological models are important in the sense that these models are homogeneous and 

anisotropic from which the process of isotropization of the universe is studied through the passage of 

time. The simplicity of the field equations made Bianchi space-time useful in constructing models of 

spatially homogeneous and anisotropic cosmologies. 

Lorenz [12] has presented tilted electromagnetic Bianchi type III cosmological solution. Tikekar and Patel 

[19] obtained some exact solutions of massive string cosmology of Bianchi type-III space-time.  Bali and 

Jain [6] have studied Bianchi type-III non-static magnetized cosmological model for perfect fluid 

distribution in general relativity. Pradhan [15] has presented massive string cosmology in Bianchi type-III 

space-time with electromagnetic field. Bali and Pradhan [5] have studied Bianchi type-III string 

cosmological models with time dependent bulk viscosity. 

Bali and Dave [9] have investigated Bianchi type-III string cosmological model with bulk viscous fluid in 

general relativity. Bali and Tinker [4] have studied Bianchi type-III bulk viscous Barotropic fluid 

cosmological models with variable G and . Singh and Tiwari [18] obtained Bianchi type-III cosmological 

models with gravitational constant G and the cosmological constant . 

In the early universe, all the investigation dealing with physical process use a model of the universe, 

usually called a big-bang model. The big-bang model based on Einstein field equation successfully 

explains the three important observation in astronomy : (i) The phenomena of expanding universe, (ii) 

primordial nucleo-synthesis, (iii) The observed isotropy of the cosmic background radiation.  

Thus alternative theories were proposed from time to time. The most well known theory is the 'Steady 

State Theory' by Bondi and Gold [10]. In this theory the universe does not have any singular beginning 

nor an end on the cosmic time scale, moreover the statistical properties of the large scale features of 

the universe do not change. To account for the constancy of the mass density they have envisage a very 

slow but continuous creation matter in contrast to the one time infinite and explosive creation at t = 0 of 

the standard model. But it suffers from the serious disqualification that they do not give any physical 

justification in the form of any dynamical theory for the phenomenon of the continuous creation of 

matter. Thus the principle of conservation of matter is clearly scarifies in this formulism. To remove this  
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problem Hoyle and Narlikar [11] adopted a field theoretic approach introducing a massless and 

chargeless scalar field in Einstein Hilbert action to account for creation of matter. 

Bali and Tikekar [7] have investigated C-field cosmological model for dust distribution in FRW space-time 

with variable gravitational constant. Bali and Kumawat [8] have investigated C-field cosmological models 

for dust and barotropic fluid distribution in non flat FRW space time with variable gravitational constant. 

Bali and Saraf [3] have investigated Bianchi type I dust field universe with decaying vacuum energy in C-

field cosmology. Saraf [17] studied Bianchi type-I cosmological model for dust distribution with variable 

G and Lambda. Bali and Goyal [1] have investigated inflationary scenario in Bianchi type-V space time 

with variable bulk viscosity and dark energy in Radiation dominated phase. 

Narlikar and Padmanabhan [14] have investigated the solution of Einstein's field equation with admit 

radiation and negative energy massless scalar C-field as source. Bali and Saraf [2] obtained Bianchi type-

III dust filled universe with time dependent  in C-field cosmology. Tyagi and Singh [20] studied LRS 

Bianchi type III barotropic fluid cosmological model in C-field with varying cosmological constant . LRS 

Bianchi type-V perfect fluid cosmological model in C-field theory with variable  have studied by Tyagi 

and Singh [21]. Parikh and Tyagi [16] have investigated Bianchi type VI0 cosmological with Barotropic 

perfect fluid in creation field theory with time dependent . Mehta and Chundawat [13] have studied 

LRS Bianchi type-II cosmological model with barotropic perfect fluid in C-field theory with time 

dependent term. 

In this Paper, we have investigated C-field cosmology in Bianchi type-III space time with Bulk viscosity 

(dust distribution) and time dependent cosmological term. We assume the matter content of the 

universe is in the form of dust, which leads to p = 0. To get the deterministic model of the universe we 

assumed that  (shear) is proportional to  (expansion) which leads to B = Cn, where n is constant and B, 

C are metric potentials and   = constant as considered by Zimdahl [22]. We find that the creation field 

(C) increases with time which matches with the result of H–N theory. The physical and geometrical 

aspects of the model are also discussed. 

2. THE METRIC AND FIELD EQUATIONS 
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We consider Bianchi type-III metric given in the form  

 222x222222 dzCdyeBdxAdtds   ... (1) 

where A, B and C are function of t alone and xABCeg   

Einstein's field equation by introduction of C-field is modified by Hoyle and Narlikar [11] as 

 j
i

)c(

j
i

)m(

j
i

j
i

j
i gTTG8Rg

2

1
R 














  ... (2) 

The energy momentum tensor 
)m(

j
iT  for Bulk viscous and 

)c(

j
iT  for creation field are given by  

 j
i

j
i

)m(

j
i g)p(v v)p(T   ... (3) 

where                      pp   

 







 

CCg
2

1
CCfT

j
i

j
i

)c(

j
i  ... (4) 

where f > 0 is coupling constant between matter and creation field and 
ii

dx

dC
C   

The co-moving coordinate are chosen such that 1). 0, 0, ,0(vi   The non-vanishing components of 

energy momentum tensor for matter are given by  

 
)m(

4
4

)m(

3
3

)m(

2
2

)m(

1
1 T , TT T   ... (5) 

The non-vanishing components of energy momentum tensor for creation field are given by 

 2

)c(

4
4

3
3

2
2

2

)c(

1
1 Cf

2

1
T  ,TTCf

2

1
T    ... (6) 
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Hence the Einstein field equation (2) for the metric (1) together with (5) and (6) takes the form 

 





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BA   ... (10) 

 0
B

B

A

A 44   ... (11) 

The suffix 4 by the symbols A, B and C denotes differentiation w.r.t.'t'. 

3. SOLUTIONS OF FIELD EQUATIONS 

The conservation equation 

 
0]gGT8[ j;
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i

j

i   ... (12) 

which leads to 
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Cd 4442444
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    ... (13)

 

following Hoyle and Narlikar [11], we have taken p = 0, the source equation of C-field 
f

n
;C i
i   leads to C 

= t for large r 

Thus   1C  . 
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Using 1C  , equations (7), (8), (9) and (10) leads to 
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Equation (11) leads to  

 BA   ... (18) 

where α is constant of integration. The condition   leads to 

 B = Cn  ... (19) 

where n is constant and B, C are metric potentials 

Equation (15) and (16) leads to 

 0
AAC
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BA

C

C

B

B
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4444 


  ... (20) 

Equation (11), (18), (19) and (20) leads to 

 n21

2

2

4
44 C

)1n(

2

C

C
n4C2 


  ... (21) 

To get the deterministic value of C, we assume that C4 = F(C) 
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This leads to C44 = FF’ where 
dC

dF
'F   

Equation (21) leads to 
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2
2

C
)1n(

2
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n4

dC
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  ... (22) 

Equation (22) leads to 
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n22

22
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)1n(

1
F 











   ... (23) 

The constant of integration has been taken zero for simplicity. 

Equation (23) leads to 

 nlt
1n

n
C

2

n 


  

            nC   = (at + b)       ... (24) 

where n  b  ,
1n

n
a

2



  and n is positive integer. 

Equation (19) and (24) leads to 

 B = (at + b) ... (25) 

Equation (24) leads to 

 C = (at + b)1/n ... (26) 

from equation (18) and (25), we have 

 )bat(A   ... (27) 
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Equation (14) leads to 
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Using equation (25) and (26) in (28), we have 
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where KGf4  and  LG8   

Equation (17), (25), (26), (27) and (29) leads to 
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Thus the metric (1), after using (25), (26) and (27) takes the form 

 
2n/22x222222 dz)bat(]dyedx[)bat(dtds   ... (31) 

Using equation (25), (26), (27), (29) and (30) in equation (13) leads to 
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from equation (32), we have 
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which leads to 

 tC   ... (33) 

Thus creation field increases with time which matches with the result obtained by Hoyle and Narlikar 

[11]. 

4. PHYSICAL AND GEOMETRICAL FEATURES 

The homogeneous mass density (), the cosmological constant term, the creation field (C), spatial 

volume (R3), the deceleration parameter (q), shear tensor () and expansion () of the model (31) are  

given by 
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5. CONCLUSION 

The scale factor R increase with time, since deceleration parameter q > 0 for n > 1, hence the model (31) 

represent decelerating universe. The density decrease as time increase. The model (31) passes through a 

singular state at t = 
a

b
 , this is explained as creation exists all the time, so there is a big crunch 

between 
a

b
  to ∞ and creation is going on front t = 

a

b
  to ∞. During this period the model exist. 

Since 



  ,t  is constant, therefore model (31) does not approaches to isotropy in late time. Since 

  at t = 0, hence model (31) is free from initial singularity. 

The coordinate distance  H  to the horizon is the maximum distance a null ray could have travelled at 

time t starting from infinite past i.e. 

 H  


t

tR

dt

– 3 )(
 

We could extent the proper time t to in the past because of non-singular nature of space time, thus 

 H )/12(030 )()( n

tt

bat

dt
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dt


  
 

The integral of diverge at lower limit shows that the model is free from event horizon. 
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ABSTRACT 

We have investigated Bianchi type-VIII string cosmological model for barotropic fluid distribution with 

dark energy  .To get  the deterministic model of the universes, we suppose expansion  is proportional 

to the shear  and the dark energy () is assumed to be proportional to𝑉−3where V is scale factor. The 

physical and geometrical aspects of the model are also discussed. 
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1. INTRODUCTION 

It is still anintractable problem before us to know the exact physical situation at very early stages of 

the genesis of our universe. The string theory is a utile concept before the creation of the particle in 

the universe. The string are the important topological stable defects due to the phase transition that 

occurs as the temperature lower down  below some critical temperature at the very early stages of the 

universe. 

It is believed that cosmic strings give rise to density perturbation which leads to the formation of 

galaxies (Zel‟dovich [25]). The general relativistic treatment of strings was obtained by Letelier 

[9,10] and Stachel [21]. Bali et al. [1, 2, 3, 5] have obtained Bianchi type IX, type V & type I string 

cosmological models in general relativity. Exact solutions of string cosmology for Bianchi type 

II,VI0, VIII and IX space-times have been obtained by Krori et al.[8]. Tyagi et al. [23] have studied 

Inhomogeneous Bianchi type-VI0 string dust cosmological model of perfect fluid distribution in 

general relativity.Singh [20] also studied string cosmology with electromagnetic fields in Bianchi 

type-II, VIII & IX space times. Tyagi et al. [24] have studied Bianchi Type-IX String Cosmological 

Models for Perfect fluid Distribution in General Relativity. 

Fluids have played important role in the entire history of the Universe. Their components are 

relatively simple and behave as perfect fluids, at least at the background level. A perfect fluid is an 

inviscid fluid with no heat conduction. It is analogous to an ideal gas in standard thermodynamics. 

The matter distribution is satisfactorily described by perfect fluids due to the large scale distribution 

of galaxies in our universe. However, a realistic treatment of the problem requires the consideration 

of material distribution other than the perfect fluid.  
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The homogeneous and anisotropic Bianchi models play remarkable role in the present day universe. 

The advantages of the anisotropic models are that they have a significant role in the description of the 

evolution of the early phase of the universe and they help in finding more general cosmological 

models than the isotropic FRW models.  Reddy et al. [16] studied Bianchi type II, VIII and IX models 

in scale covariant theory of gravitation. Chhajed et al. [6] have studied Bianchi type VIII 

cosmological model with Quadratic equation of state.Also Rao and Sanyasi Raju[15] and  Sanyasi 

and Raju [19] have studied Bianchi type VIII & IX models in Zero mass scalar fields and in Self – 

Creation theory of Cosmology. Bali and Swati [4] have investigated Inflationary scenario in Bianchi 

type VIIIspace-time for a massless scalar field with flat potential. Rao et al. [12-14] have studied 

Bianchi type-II,VIII & IX string cosmological models , perfect fluid cosmological models in Saez 

Ballester scalar tensor theory of gravitation and string cosmological models in general relativity as 

well as self-creation theory of gravitation respectively.  

Motivated by the above discussion, in this chapter, we have investigated Bianchi type-VIII 

stringcosmological model with barotropic fluid distribution and dark energy Λ . The present study 

deals with Bianchi VIII string cosmological models for perfect fluid distribution. We consider two 

cases (i)𝝆 + 𝝀 = 𝟎(Reddy string) (ii)𝝆 − 𝝀 = 𝟎 (Nambu string). To get the deterministic model of the 

universe, we assume that the shear (σ) is proportional to expansion (θ) as considered by Thorne [22] 

and Collins et al. [7]. The physical and geometrical properties of the models are discussed. 

2.         METRIC AND FIELD EQUATIONS 

The line –element for Bianchi type-VIII space time is considered as 

𝑑𝑠2 = −𝑑𝑡2 + 𝑅2(𝑡)[𝑑𝜃2 + 𝑐𝑜𝑠𝑕2𝜃𝑑∅2] + 𝑆2(𝑡)[𝑑𝛹 + 𝑠𝑖𝑛𝑕𝜃𝑑∅]2(1) 
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in which R (t), S (t) are cosmic scale functions. 

The energy momentum tensor 
j

T
i

 in the presence of perfect fluid is defined by 

𝑇𝑖
𝑗

=  𝜌 + 𝑝 𝑣𝑖𝑣
𝑗 + 𝑝𝑔𝑖

𝑗
− 𝜆𝑥𝑖𝑥

𝑗                                                                                                               (2) 

Where ρ is proper energy density, p is pressure and 𝜆 is string tension density. Also ix , the unit space 

like vector specifying the direction of strings and iv , the unit time like vector specifying the following 

conditions 

i i
i iv v = -1= -x x and

i
iv x = 0  

The co-moving coordinate system is chosen as 

iv = (0,0,0,1) and𝑥𝑖 =  
1

𝑆
, 0,0,0  

The Einstein’s field equation in the geometrized unit  c = 8πG=1  is given by 

𝑅𝑖
𝑗
−

1

2
𝑅𝑔𝑖

𝑗
+ 𝛬𝑔𝑖

𝑗
= −𝑇𝑖

𝑗
 (3) 

Where 𝑅𝑖
𝑗
 is Ricci tensor,𝑅 = 𝑔𝑖𝑗𝑅𝑖𝑗  is Ricci scalar. 

The Einstein’s field equations (3) for metric (1) leadto: 

2𝑅44

𝑅
+

𝑅4
2

𝑅2 −
1

𝑅2 −
3𝑆2

4𝑅4 + 𝛬 = − 𝑝 − 𝜆 (4) 

𝑅4𝑆4

𝑅𝑆
+

𝑆2

4𝑅4 +
𝑆44

𝑆
+

𝑅44

𝑅
+ 𝛬 = −(𝑝)               (5) 

𝑅4
2

𝑅2 +
2𝑅4𝑆4

𝑅𝑆
−

1

𝑅2 −
𝑆2

4𝑅4 + 𝛬 = 𝜌      (6) 

The scalar expansion  and shear  are given by 

Poonam Jorwal, Dhirendra Chhajed and Atul Tyagi / BIANCHI TYPE-VIII STRING … 



60 |  

 

 

𝜃 = 3H   (7) 

𝜍2 =
1

2
  𝐻𝑖

23
𝑖=1 −

1

3
𝜃2                             (8) 

3. SOLUTION OF FIELD EQUATIONS 

The field equations (4) to (6) represent a system of three independent equations in six unknowns R, S, λ, 

p, ρ andΛ . 

In order to overcome the undeterminacy of six unknowns involved in three independent field equations, 

we consider the following two cases (i) 𝜌 + 𝜆 = 0 , i.e. the sum of the rest energy density and tension 

density for a cloud of strings vanishes (Reddy [17, 18] and Mohanty[11]) (ii)(Nambu) strings given by 

𝜌 − 𝜆 = 0. 

Two additional constraints related to these parameters are required to obtain the explicit solution of the 

system. 

Cosmic shear 𝜍 represents an effect of distortion of the image of distant galaxies due to deflection of 

light by matter, as predicted by general relativity. 

Metric expansion 𝜃 is a key feature of Big-Bang cosmology and is modeled mathematically with the 

Friedmann- Lemaitre- Robertson-Walker (FLRW) metric. The metric expansion of space is the averaged 

increase of metric (i.e.) measured distance between distant objects in the universe with time. 

We assume  that shear σ is proportional to expansion  

Thus we have  

𝑆 = 𝑅𝑛                         (9) 
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and ∧ is proportional to  

∧=
𝛼

𝑆𝑅2(10) 

Where 𝛼is a constant of proportionality. 

We assume the above conditions under two cases 

(i) Case I: 𝝆 + 𝝀 = 𝟎 

 From (4) and (6) 

2𝑅44

𝑅
+

2𝑅4
2

𝑅2 −
2

𝑅2 −
𝑆2

𝑅4 +
2𝑅4𝑆4

𝑅𝑆
+ 2 ∧= −𝑝(11) 

Using (5), we get 

𝑅44

𝑅
+

2𝑅4
2

𝑅2 −
2

𝑅2 −
5

4𝑅4−2𝑛 +
𝑅4𝑆4

𝑅𝑆
−

𝑆44

𝑆
+∧= 0                          (12) 

 

Using condition (9) and (10), we get 

(1−𝑛)𝑅44

𝑅
+

(2+2𝑛−𝑛2)𝑅4
2

𝑅2 =
2

𝑅2 +
5𝑅2𝑛−4

4
−

𝛼

𝑅𝑛+2(13) 

𝑅44 +
(𝑛2−2𝑛−2)𝑅4

2

 𝑛−1 𝑅
=

2

 1−𝑛 𝑅
+

5𝑅2𝑛−3

4(1−𝑛)
−

𝛼

(1−𝑛)𝑅𝑛+1                                          (14) 

Now let us consider 𝑅4 = f (R) and 𝑅44= ff' in equation (14) we get 

𝑓𝑓 ′ +
(𝑛2−2𝑛−2)𝑓2

(𝑛−1)𝑅
=

2

 1−𝑛 𝑅
+

5𝑅2𝑛−3

4(1−𝑛)
−

𝛼

(1−𝑛)𝑅𝑛+1                               (15) 

Equation (15) can be written in the form 
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𝑑𝑓 2

𝑑𝑅
+

2(𝑛2−2𝑛−2)𝑓2

(𝑛−1)𝑅
=

4

 1−𝑛 𝑅
+

5𝑅2𝑛−3

2(1−𝑛)
−

2𝛼

(1−𝑛)𝑅𝑛+1(16). 

After  integration, Eq. (16) leads to

 

𝑓2 =
𝑀

𝑅
2(𝑛2−2𝑛−2)

(𝑛−1)

−
2

 𝑛2−2𝑛−2 
−

5𝑅

 2𝑛2−4𝑛+2 
 𝑛−1 

2 4𝑛2−8𝑛−2 
+

2𝛼

(𝑛2−3𝑛−4)𝑅𝑛
(17) 

where M is the integrating constant. 

from equation (17), we have 

 
𝑑𝑅

 𝑀

𝑅

2(𝑛2−2𝑛−2)
(𝑛−1)

−
2

 𝑛2−2𝑛−2 
−

5𝑅

 2𝑛2−4𝑛+2 
 𝑛−1 

2 4𝑛2−8𝑛−2 
+

2𝛼

(𝑛2−3𝑛−4)𝑅𝑛

=  𝑑𝑡 + 𝑀′ = 𝑡 + 𝑀′                                             (18) 

WhereM' is the integrating constant. Value of R can be obtained from equation (18). Hence by 

appropriate transformation of co-ordinates, the metric (1) leads to the form 

𝑑𝑠2 = −
𝑑𝑇2

 
𝑀

𝑇

2(𝑛2−2𝑛−2)
(𝑛−1)

−
2

 𝑛2−2𝑛−2 
−

5𝑇

 2𝑛2−4𝑛+2 
 𝑛−1 

2 4𝑛2−8𝑛−2 
+

2𝛼

(𝑛2−3𝑛−4)𝑇𝑛
 

+ 𝑇2 𝑑𝜃2 + 𝑐𝑜𝑠𝑕2𝜃𝑑∅2   + 𝑇2𝑛 [𝑑𝛹 +

𝑠𝑖𝑛𝑕𝜃d∅]2(19) 

 

(ii) Case II:  𝝆 − 𝝀 = 𝟎 

 From (4) and (6) 

2𝑅4𝑆4

𝑅𝑆
+

𝑆2

2𝑅4 −
2𝑅44

𝑅
= 𝑝(20) 
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Using (5), we get 

2𝑛𝑅4
2

𝑅2 +
3

4𝑅4−2𝑛 −
𝑅44

𝑅
+

𝑅4𝑆4

𝑅𝑆
+

𝑆44

𝑆
+

𝛼

𝑅𝑛+2 = 0(21) 

 

Using condition (9) and (10), we get 

(𝑛−1)𝑅44

𝑅
+

(2𝑛+𝑛2)𝑅4
2

𝑅2 = −
3𝑅2𝑛−4

4
−

𝛼

𝑅𝑛+2(22) 

𝑅44 +
(𝑛2+2𝑛)𝑅4

2

 𝑛−1 𝑅
= −

3𝑅2𝑛−3

4(𝑛−1)
−

𝛼

(𝑛−1)𝑅𝑛+1(23) 

Now let us consider 𝑅4 = f (R) and 𝑅44= ff' in equation (23) we get 

𝑓𝑓 ′ +
(𝑛2+2𝑛)𝑓2

(𝑛−1)𝑅
= −

3𝑅2𝑛−3

4(𝑛−1)
−

𝛼

(𝑛−1)𝑅𝑛+1              (24) 

Equation (24) can be written in the form 

𝑑𝑓 2

𝑑𝑅
+

2(𝑛2+2𝑛)𝑓2

(𝑛−1)𝑅
= −

3𝑅2𝑛−3

2(𝑛−1)
−

2𝛼

(𝑛−1)𝑅𝑛+1(25) 

After  integration, Eq. (25) leads to

 

𝑓2 =
𝑁

𝑅
2(𝑛2+2𝑛 )

(𝑛−1)

−
2𝛼

 𝑛2+5𝑛 𝑅𝑛
−

3𝑅

 2𝑛2−4𝑛+2 
 𝑛−1 

2 4𝑛2+2 
(26)                             

Where N is the integrating constant. 

From equation (26), we have 
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𝑑𝑅

 𝑁

𝑅

2(𝑛2+2𝑛 )
(𝑛−1)

−
2𝛼

 𝑛2+5𝑛 𝑅𝑛
−

3𝑅

 2𝑛2−4𝑛+2 
 𝑛−1 

2 4𝑛2+2 

=  𝑑𝑡 + 𝑁′ = 𝑡 + 𝑁′                                                         (27) 

WhereN' is the integrating constant. Value of R can be obtained from equation (27). Hence by 

appropriate transformation of co-ordinates, the metric (1) leads to the form 

𝑑𝑠2 = −
𝑑𝑇2

 
𝑁

𝑇

2(𝑛2+2𝑛 )
(𝑛−1)

−
2𝛼

 𝑛2+5𝑛 𝑇𝑛
−

3𝑇

 2𝑛2−4𝑛+2 
 𝑛−1 

2 4𝑛2+2 
 

+ 𝑇2 𝑑𝜃2 + 𝑐𝑜𝑠𝑕2𝜃𝑑∅2   + 𝑇2𝑛[𝑑𝛹 + 𝑠𝑖𝑛𝑕𝜃d∅]2  (28) 

 

4. PHYSICAL AND GEOMETRICAL CHARACTERISTICS 

For the model (19), energy density ( ρ ), pressure ( p ), expansion ( θ ), shear tensor ( σ ), string tension 

density (  ) are given by 

  

𝜌 =
𝑀(2𝑛+1)

𝑇
(2𝑛2−2𝑛−6)

(𝑛−1)

+
𝛼(𝑛+2)(𝑛−1)

(𝑛−4)(𝑛+1)𝑇𝑛+2 −
1

4𝑇4−2𝑛 −
𝑛 𝑛+2 

 𝑛2−2𝑛−2 𝑇2 −
5(2𝑛+1)𝑇

(2𝑛2−6𝑛+4)
(𝑛−1)

4(2𝑛2−4𝑛−1)
(29) 

𝜆 =
1

4𝑇4−2𝑛 −
𝑀 2𝑛+1 

𝑇

 2𝑛2−2𝑛−6 
 𝑛−1 

−
𝛼 𝑛+2  𝑛−1 

 𝑛−4  𝑛+1 𝑇𝑛+2 +
𝑛 𝑛+2 

 𝑛2−2𝑛−2 𝑇2 +
5(2𝑛+1)𝑇

(2𝑛2−6𝑛+4)
(𝑛−1)

4(2𝑛2−4𝑛−1)
(30) 

 

The directional Hubble parameters 𝐻𝑥 ,𝐻𝑦 ,𝐻𝑧are given by 

𝐻𝑥 = 𝐻𝑦 =
𝑅 

𝑅
(31) 
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𝐻𝑧 =
𝑆 

𝑆
=

𝑛𝑅 

𝑅
(32) 

The mean Hubble parameter (H) is given by 

𝐻 =
1

3
 𝐻𝑥 + 𝐻𝑦 + 𝐻𝑧 =

(𝑛+2)𝑅 

3𝑅
(33) 

𝜃 = (𝑛 + 2)  
𝑀

𝑇

2 𝑛2−𝑛−3 
(𝑛−1)

−
2

 𝑛2−2𝑛−2 𝑇2 −
5

2 4𝑛2−8𝑛−2 𝑇4−2𝑛 +
2𝛼

(𝑛2−3𝑛−4)𝑇𝑛+2 

1

2

              (34) 

𝜍2 =
(𝑛−1)2

3
 

𝑀

𝑇

2 𝑛2−𝑛−3 
(𝑛−1)

−
2

 𝑛2−2𝑛−2 𝑇2 −
5

2 4𝑛2−8𝑛−2 𝑇4−2𝑛 +
2𝛼

(𝑛2−3𝑛−4)𝑇𝑛+2 (35) 

 

Isotropic pressure 𝑝 is determined if fluid is known to obey an equation of state of the form 

𝑝 = 𝛾𝜌 ,𝑤𝑕𝑒𝑟𝑒  0 ≤ 𝛾 ≤ 1(36) 

Equation (36) lead to 

 

𝑝 = 𝛾  
𝑀(2𝑛+1)

𝑇
(2𝑛2−2𝑛−6)

(𝑛−1)

+
𝛼(𝑛+2)(𝑛−1)

(𝑛−4)(𝑛+1)𝑇𝑛+2 −
1

4𝑇4−2𝑛 −
𝑛 𝑛+2 

 𝑛2−2𝑛−2 𝑇2 −
5(2𝑛+1)𝑇

(2𝑛2−6𝑛+4)
(𝑛−1)

4(2𝑛2−4𝑛−1)
 (37) 

 

For the model (28), energy density ( ρ ), pressure ( p ), expansion ( θ ), shear tensor ( σ ), string tension 

density (  ) are given by 
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𝜌 = 𝜆 =
𝑁(2𝑛+1)

𝑇
(2𝑛2+6𝑛−2)

(𝑛−1)

−
𝛼(𝑛2+𝑛−2)

(𝑛2+5𝑛)𝑇𝑛+2 −
(𝑛+2)(𝑛+1)

2(2𝑛2+1)𝑇4−2𝑛 −
1

𝑇2(38)   

 

𝑝 = 𝛾  
𝑁(2𝑛+1)

𝑇
(2𝑛2+6𝑛−2)

(𝑛−1)

−
𝛼(𝑛2+𝑛−2)

(𝑛2+5𝑛)𝑇𝑛+2 −
(𝑛+2)(𝑛+1)

2(2𝑛2+1)𝑇4−2𝑛 −
1

𝑇2 (39) 

 

𝜃 = (𝑛 + 2)  
𝑁

𝑇

 2𝑛2+6𝑛−2 
(𝑛−1)

−
3

2 4𝑛2+2 𝑇4−2𝑛 −
2𝛼

(𝑛2+5𝑛)𝑇𝑛+2 

1

2

(40) 

𝜍2 =
(𝑛−1)2

3
 

𝑁

𝑇

 2𝑛2+6𝑛−2 
(𝑛−1)

−
3

2 4𝑛2+2 𝑇4−2𝑛 −
2𝛼

(𝑛2+5𝑛)𝑇𝑛+2 (41) 

∧=
𝛼

𝑇𝑛+2(42) 

5. CONCLUSION 

The models (19) and (28) start expanding with big-bang at T=0.The expansion θ decreases as time 

increases for−2 < 𝑛 < 2 . We also observe that it approaches to zero as 𝑇 → ∞ and stops when 𝑛 =

−2. Since → ∞,
𝜍

𝜃
≠ 0, therefore the model does not approach isotropy for large value of T, however the 

model is isotropize for 𝑛 = 1  . 

The energy density(𝜌), string tension density (𝜆)  and pressure(𝑝) for both models are found to be a 

decreasing function of time T for   −2 < 𝑛 < 2 and approaches to 0 as𝑇 → ∞. 
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By equation (42) , we observe that the cosmological term ∧ for the model is also decreasing function of 

time T for 𝑛 > −2 and approaches to zero at late time , which in agreement with present astronomical 

observations. 

Hence, in general, the present model represents expanding, shearing and non-rotating, anisotropic 

universe. 
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distributions 
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Abstract: In view of their importance and usefulness in diffraction theory and probability distributions, 

serval generalizations of Gamma-type functions were investigated extensively in recent years. The main 

object of this paper is to present some results on a new generalized gamma- type function  

𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝,𝑘 ≔ 𝜈−𝜆  𝑡𝑢−1∅𝜔 𝛼,𝛽;−𝑝𝑡 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘;−

𝑡

𝜐
 

∞

0

𝑑𝑡 

where 𝜙𝜔 𝛼,𝛽; 𝑧  is 𝜔 − confluent hypergeometric function and 𝑅2
𝑘

3  is a new generalized 

hypergeometric function which has been defined and studied by Saxena, Ram, Naresh [1] in the 

following form 

𝑅3 2 𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘; 𝑧 =
Γ 𝑐 Γ 𝑑 

Γ 𝑎 Γ 𝑏 
 

 𝜆 𝑟Γ 𝑎 + 𝑘𝑟 Γ 𝑏 + 𝑘𝑟 

Γ 𝑐 + 𝑘𝑟 Γ 𝑑 + 𝑘𝑟 

𝑧𝑟

𝑟!

∞

𝑟=0

 

A probability density function associated with the generalized gamma-type function investigated in the 

paper, together with serval other related in the theory of probability and statistics are also considered. 

The results investigated earlier by AL-Musallam and Kalla [2], Kobayashi[3,4], Saxena, Ram, Naresh and 

Kalla [5] etc follow, as special cases. 

Introduction and preliminaries 

Recently Saxena, RamNaresh [1]introduce the following generalized hypergeometric function in 

mathematical analysis: 

𝑅3 2 𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘; 𝑧 =
Γ 𝑐 Γ 𝑑 

Γ 𝑎 Γ 𝑏 
 

 𝜆 𝑟Γ 𝑎+𝑘𝑟 Γ 𝑏+𝑘𝑟  

Γ 𝑐+𝑘𝑟 Γ 𝑑+𝑘𝑟 

𝑧𝑟

𝑟 !
∞
𝑟=0                                                              (1) 

where |𝑧| < 1,𝑘 > 0, 

This function can also be represented in the integral form as 
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𝑅3 2 𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘; 𝑧 =
Γ 𝑑 

Γ 𝑎 Γ 𝑑 − 𝑎 
. 𝑡𝑎−1 1 − 𝑡 𝑑−𝑎−1 𝑅2 1 𝜆, 𝑏; 𝑐; 𝑘; 𝑧𝑡𝑘 𝑑𝑡

1

0

 

 

                                                 =    
Γ 𝑑 

k Γ 𝑎 Γ 𝑑−𝑎 
. 𝑡

𝑎

𝑘
−1  1 − 𝑡

1

𝑘 
𝑑−𝑎−1

𝑅2 1 𝜆, 𝑏; 𝑐; 𝑘; 𝑧𝑡 𝑑𝑡  
1

0
                  (2) 

where 𝑅𝑒 𝑑 > 𝑅𝑒 𝑎 > 0,𝑅𝑒 𝑐 > 𝑅𝑒 𝑏 > 0,𝑘 > 0, |𝑧| < 1. 

Certain analytic properties of (1), such as integral representations, recurrence relations etc.as 

considered in [1].  

In the present paper the authors introduce a further generalization of the gamma-type function 

associated with 𝜔 − confluent hypergeometric function  𝜙𝜔 𝛼,𝛽; 𝑧  in the form 

𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

𝑢, 𝜈,𝜔
𝑝,𝑘 ≔ 𝜈−𝜆  𝑡𝑢−1∅𝜔 𝛼,𝛽;−𝑝𝑡 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘;−

𝑡

𝜈
 

∞

0
𝑑𝑡    (3) 

𝑅𝑒 𝑢 > 0,𝑅𝑒 𝑝 > 0,𝑘 > 0,  𝑎𝑟𝑔𝜈 < 𝜋, the 𝜔 − confluent hypergeometric function  𝜙𝜔 𝛼,𝛽; 𝑧  

Is defined as 

         𝜙𝜔 𝛼,𝛽; 𝑧 =
Γ 𝛽 

Γ 𝛼 
 

Γ 𝛼+𝜔𝑘  

Γ 𝛽+𝜔𝑘  
∞
𝑘=0

𝑧𝑘

𝑘 !
 (4) 

 

 𝑧 < ∞,𝜔 > 0,  𝛽 + 𝜔𝑘 ≠ 0,1,2,…  

The Mellin –Barnes integral representation of 𝑅2
𝑘

3  𝑧  can be expressed in the form 

𝑅2
𝑘

3  𝑧 =
1

2𝜋𝜔

Γ 𝑐 Γ 𝑑 

Γ 𝑎 Γ 𝑏 Γ 𝜆 
 

Γ −𝑠 Γ 𝜆+𝑠 Γ 𝑎+𝑘𝑠 Γ 𝑏+𝑘𝑠 

Γ 𝑐+𝑘𝑠 Γ 𝑑+𝑘𝑠 

𝜔  ∞

−𝜔  ∞
 −𝑧 𝑠𝑑𝑠(5) 

Where 𝜔 =  −1,  arg −𝑧  < 𝜋,𝑘 > 0 and the poles of the gamma functions appearing in the 

integrand of equation (5) are assumed to be simple. Equation (5)can be established by the application of 

calculus of residues ,if we calculate the sum of residues at the the poles of Γ −𝑠 at the points 

𝑠 = 𝜈 𝜈 = 0,1,2… . 

If, however, we calculate the sum of the residues at the poles of the gamma functions Γ 𝜆 + 𝑠 ,Γ 𝑎 +

𝑘𝑠  𝑎𝑛𝑑 Γ 𝑏 + 𝑘𝑠  at the points 𝑠 = −𝜆 − 𝜈; 𝑠 = −
𝑎

𝑘
− 𝜈 𝑎𝑛𝑑 𝑠 = −

𝑏

𝑘
− 𝜈  𝜈 = 0,1,2…  repectively, 

in the integrand of equation (5),we find that 
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𝑅2
𝑘

3  𝑧 =

Γ 𝑐 Γ 𝑑 

Γ 𝑎 Γ 𝑏 Γ 𝜆 
.   −𝑧 𝜆  

Γ 𝜆+𝜈 Γ 𝑎−𝑘𝜆−𝑘𝜈  Γ 𝑏−𝑘𝜆−𝑘𝜈  

Γ 𝑐−𝑘𝜆−𝑘𝜈  Γ 𝑑−𝑘𝜆−𝑘𝜈  
∞
𝜈=0  

1

𝑧
 
𝜈

+

 −𝑧 −
𝑎

𝑘  
Γ 

𝑎

𝑘
+𝜈 Γ 𝜆−𝜈−

𝑎

𝑘
 Γ 𝑏−𝑎−𝑘𝜈  

Γ 𝑐−𝑎−𝑘𝜈  Γ 𝑑−𝑎−𝑘𝜈  
∞
𝜈=0  

1

𝑧
 
𝜈

+  −𝑧 −
𝑏

𝑘  
Γ 

𝑏

𝑘
+𝜈 Γ 𝜆−𝜈−

𝑏

𝑘
 Γ 𝑎−𝑏−𝑘𝜈  

Γ 𝑐−𝑏−𝑘𝜈  Γ 𝑑−𝑏−𝑘𝜈  
∞
𝜈=0  

1

𝑧
 
𝜈
 (6) 

Where  𝑎𝑟𝑔 −𝑧  < 𝜋, |𝑧| > 1. 

Equation (6) gives the analytic continuation formula for the function 𝑅2
𝑘

3  𝑧 . 

Generalized gamma-type function 

Let us assume that Ω𝜈 = { 𝜈 ∈ 𝐶; |𝑎𝑟𝑔 𝜈 | < 𝜋 } and Ω𝑢 =   𝑢 ∈ 𝐶;  𝑅𝑒 𝑢 > 0 . 

DEFINITION     Let 𝜆, 𝑎, 𝑏, 𝑐,𝑑,𝛼,𝛽,𝑝 ∈ 𝐶 with 𝑐,𝑑 ≠ 0,−1,−2,… ;𝑘 > 0,𝜔 > 0 and 𝑅𝑒 𝑝 > 0,we 

define 

𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝,𝑘 ≔ 𝜈−𝜆  𝑡𝑢−1∅𝜔 𝛼,𝛽;−𝑝𝑡 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑; 𝑘;−

𝑡

𝜈
 

∞

0
𝑑𝑡  (7) 

where 𝑢 ∈ Ω𝑢 , 𝜈 ∈  Ω𝜈and 𝑅2
𝑘

3  𝜆, 𝑎, 𝑏; 𝑐,𝑑;𝑘;−
𝑡

𝜈
  is the generalized hypergeometric function. 

For  𝜔 = 1, the 𝜔- confluent hypergeometric function reduces to confluent hypergeometric function[6] 

𝐹1 𝛼;𝛽; 𝑧 1 =  
 𝛼 𝑘𝑧

𝑘

 𝛽 𝑘𝑘!
∞
𝑘=0   (8) 

where  𝑧 < ∞,𝛼,𝛽 > 0,𝛽 ≠ 0,1,2,… 

For 𝜔 = 1,b=d ,(7) reduces to the following result given earlier by Saxena [5] 

𝑆  
𝜆,𝑎, 𝑏; 𝑐, 𝑏;𝛼,𝛽; 

𝑢, 𝜈
𝑝,𝑘 ≔ 𝜈−𝜆  𝑡𝑢−1𝜙 𝛼,𝛽;−𝑝𝑡 2𝑅1  𝜆,𝑎; 𝑐;𝑘;−

𝑡

𝜈
 𝑑𝑡

∞

0
(9) 

where  𝑅𝑒 𝑢 > 0,𝑅𝑒 𝑝 > 0,𝑘 > 0,  𝑎𝑟𝑔𝜈 < 𝜋. 

For 𝛼 = 𝛽,𝜔 = 1 the 𝜔- confluent hypergeometric function reduces to an exponential function 𝑒−𝑝𝑡  

and consequently for 𝛼 = 𝛽,𝜔 = 1, 𝑏 = 𝑑 ,(7) reduces to the following result given by Virchenko et. 

al.[7]. 

𝑆  
𝜆,𝑎, 𝑏; 𝑐, 𝑏;𝛼,𝛼; 

𝑢, 𝜈
𝑝,𝑘 = Γ  

𝜆,𝑎; 𝑐; 
𝑢, 𝜈

𝑝,𝑘 = 𝜈−𝜆  𝑡𝑢−1𝑒−𝑝𝑡 2𝑅1  𝜆,𝑎; 𝑐;𝑘;−
𝑡

𝜈
 𝑑𝑡

∞

0
(10) 

where  𝑅𝑒 𝑢 > 0,𝑅𝑒 𝑝 > 0,𝑎𝑛𝑑  𝑎𝑟𝑔𝜈 < 𝜋. 

If we set 𝛼 = 𝛽,𝜔 = 1𝑎𝑛𝑑 𝑘 = 1, equation (7) reduces to the generalized gamma type function 

involving Clausenian hypergeometric series introduced and studied by Saxena and Kalla [8] in the form 

GANITA SANDESH, Vol. 31 (June & December, 2017) 



73 |  

 

 

𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑 

𝑢, 𝜈
𝑝 = 𝜈−𝜆  𝑡𝑢−1𝑒−𝑝𝑡 3𝐹2  𝜆,𝑎, 𝑏; 𝑐,𝑑;−

𝑡

𝜈
 

∞

0
𝑑𝑡(11) 

where  𝑅𝑒 𝑢 > 0,𝑅𝑒 𝑝 > 0,𝑎𝑛𝑑  𝑎𝑟𝑔𝜈 < 𝜋. 

For 𝛼 = 𝛽,𝜔 = 1,𝑏 = 𝑑 𝑎𝑛𝑑 𝑘 = 1, equation (7) yields the following generalized gamma function 

studied by Al-Mussallam and Kalla[9,10]. 

𝐷  
𝜆,𝑎; 𝑐 
𝑢, 𝜈

𝑝 = 𝜈−𝜆  𝑡𝑢−1𝑒−𝑝𝑡 2𝐹1  𝜆,𝑎; 𝑐;−
𝑡

𝜈
 

∞

0
𝑑𝑡    (12) 

where  𝑅𝑒 𝑢 > 0,𝑅𝑒 𝑝 > 0,𝑎𝑛𝑑  𝑎𝑟𝑔𝜈 < 𝜋. 

For a=c, b=d, 𝛼 = 𝛽,𝜔 = 1𝑎𝑛𝑑 𝑘 = 1, equation (7) reduce to the following generalized gamma function 

studied by Kobayashi [3,4]. 

Γ𝑚  𝑢, 𝜈 =  
𝑡𝑢−1𝑒−𝑡

 𝑡+𝜈 𝑚
∞

0
𝑑𝑡 (13) 

where  𝑅𝑒 𝑢 > 0,  𝑎𝑟𝑔𝜈 < 𝜋 𝑎𝑛𝑑 𝑚 ∈ 𝑁0 . 

Theorem1. S is analytic in the domain Ω𝑢 × Ω𝜈 . 

The proof is similar to the corresponding theorem for the generalized gamma function given by Saxena 

and Kalla [8,pp.191-192], if we employ the asymptotic estimate[2].  

𝑅3 2 𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘; 𝑧 = 𝐴1𝑧
−𝜆 + 𝐴2𝑧

−
𝑎

𝑘 + 𝐴3𝑧
−
𝑏

𝑘 + 𝑂 𝑧−𝜆−1 + 𝑂  𝑧−
𝑎  

𝑘
−1 + 𝑂  𝑧−

𝑏

𝑘
−1            (14) 

which holds for large z, 𝑎𝑟𝑔 −𝑧  < 𝜋. Here 𝐴1,𝐴2,𝐴3 are numerical constants. 

LEMMA 1.  Let 𝜆, 𝑎, 𝑏, 𝑐, 𝑑,𝛼,𝛽,𝑝 ∈ 𝐶 with 𝑐,𝑑 ≠ 0,−1,−2,… ;𝑘 > 0,𝜔 > 0 and 𝑅𝑒 𝜈𝑝 > 0, then S 

has the representation 

𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝,𝑘 ≔ 𝜈𝑢−𝜆  𝑡𝑢−1∅𝜔 𝛼,𝛽;−𝑝𝜈𝑡 3𝑅2 𝜆,𝑎, 𝑏; 𝑐,𝑑; 𝑘;−𝑡 

∞

0
𝑑𝑡,                 (15) 

where 𝑢 ∈ Ω𝑢 , 𝜈 ∈  Ω𝜈 . 

Proof. The proof is trivial. 

For 𝑏 = 𝑑 𝑎𝑛𝑑 𝜔 = 1,equation (15) reduces to a result given by Saxena, Ram, Naresh and Kalla 

[5,p.682] 

When 𝛼 = 𝛽, 𝑏 = 𝑑 𝑎𝑛𝑑 𝜔 = 1, equation (15) reduces to a result given by Virchenko et.al [10,p.97] 

 

LEEMA 2. The partial derivatives of S are  

 
𝜕𝑛

𝜕𝑢𝑛
𝑆 = 𝜈−𝜆  𝑡𝑢−1∅𝜔 𝛼,𝛽;−𝑝𝑡  𝑙𝑜𝑔𝑡 𝑛 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘;−

𝑡

𝜈
 

∞

0
𝑑𝑡,                                  (16) 
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and 

𝜕𝑛

𝜕𝜈𝑛
𝑆 =  −1 𝑛 𝜆 𝑛  𝑆  

𝜆 + 𝑛,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 
𝑢, 𝜈,𝜔

𝑝,𝑘                                                                               (17) 

 

The proof of equations (16) and (17) is straight forward. 

 

LEEMA 3. Let 𝜆,𝑎, 𝑏, 𝑐,𝑑,𝛼,𝛽, 𝑝 ∈ 𝐶 with 𝑐, 𝑑 ≠ 0,−1,−2,… ;𝑘 > 0,𝜔 > 0 and 𝑅𝑒 𝑝 > 0, then 

thefollowing relation holds 

𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝, 𝑘 =

𝑝  ∝

𝑢  𝛽
 𝑆  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼 + 1,𝛽 + 1; 
𝑢 + 1, 𝜈,𝜔

𝑝,𝑘  

 

                                       +
𝜆Γ 𝑐 Γ 𝑑 Γ 𝑎+𝑘 Γ 𝑏+𝑘 

Γ 𝑎 Γ 𝑏 Γ 𝑐+𝑘 Γ 𝑑+𝑘 
 𝑆  

𝜆 + 1,𝑎 + 𝑘, 𝑏 + 𝑘; 𝑐 + 𝑘,𝑑 + 𝑘;𝛼,𝛽; 
𝑢 + 1, 𝜈,𝜔

𝑝,𝑘 ,  (18) 

 

Proof: If we use [1,equation (3.23)] for 
𝑑

𝑑𝑧
𝑅23

𝑘
(𝑧) and integrate by parts ,then equation (15) leads 

to equation (18). 

Incomplete S-functions 

A generalized incomplete gamma function corresponding to the S-function (15) is defined in the 

form 

 

𝑆0
𝑥  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝,𝑘 ≔ 𝜈−𝜆  𝑡𝑢−1∅𝜔 𝛼,𝛽;−𝑝𝑡 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘;−

𝑡

𝜈
 

𝑥

0
𝑑𝑡,           (19) 

 

where 𝑥,𝑘 ,𝜔 > 0 ,  𝑅𝑒 𝑢 > 0,𝑅𝑒 𝑝 > 0 𝑎𝑛𝑑  𝑎𝑟𝑔𝜈 < 𝜋. 

The generalized complementary incomplete gamma function is defined by 

𝑆𝑥
∞  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 
𝑢, 𝜈,𝜔

𝑝,𝑘 ≔ 𝜈−𝜆  𝑡𝑢−1∅𝜔 𝛼,𝛽;−𝑝𝑡 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘;−
𝑡

𝜈
 

∞

𝑥
𝑑𝑡          (20) 

 

where 𝑥,𝑘 ,𝜔 > 0 ,  𝑅𝑒 𝑢 > 0,𝑅𝑒 𝑝 > 0 𝑎𝑛𝑑  𝑎𝑟𝑔𝜈 < 𝜋. 

Thus, the definitions ( 19) and (20) yield  

 

𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝,𝑘 = 𝑆0

𝑥  
𝜆, 𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝,𝑘 + 𝑆𝑥

∞  
𝜆, 𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

𝑢, 𝜈,𝜔
𝑝,𝑘                   (21) 

For 𝛼 = 𝛽, 𝑏 = 𝑑, (19) and (20) reduce to the generalized incomplete gamma functions developed by 

Virchenko et al. [10,p.98]. Further for 𝛼 = 𝛽, 𝑏 = 𝑑 , and 𝑘 = 𝜔 = 1, equations (19) and (20) yield the 

incomplete gamma functions given by Al-Musallam and Kalla [9]. 

Remark. If we set 𝛼 = 𝛽, 𝑎 = 𝑐, 𝑏 = 𝑑,𝑝 = 𝑘 = 𝜔 = 1 in (19) and (20) and 𝜆 → 0 , then we find that 

lim𝜆→0 𝑆0
𝑥  
𝜆,𝑎, 𝑏;𝑎, 𝑏;𝛼,𝛼; 

𝑢, 𝜈, 1
1,1 = 𝛾 𝑢, 𝑥 =  𝑡𝑢−1𝑒−𝑡𝑑𝑡 ,

𝑥

0
(22) 
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where 𝛾 𝑢, 𝑥  is the incomplete gamma function of the first kind, and  

lim𝜆→0 𝑆𝑥
∞  

𝜆,𝑎, 𝑏;𝑎, 𝑏;𝛼,𝛼; 
𝑢, 𝜈, 1

1,1 = Γ 𝑢, 𝑥 =  𝑡𝑢−1𝑒−𝑡𝑑𝑡 ,
∞

𝑥
                                           (23) 

where Γ 𝑢, 𝑥 is the incomplete gamma function of the second kind. 

The following theorem enumerates some properties and recurrence relations satisfied by 

𝑆0
𝑥   𝑎𝑛𝑑 𝑆𝑥

∞ .The proofs are straight forward. 

A class of probability density function 

Let 𝑚 𝑎𝑛𝑑 𝛿 represent the shape parameters. Further, let 𝜍 𝑎𝑛𝑑 𝛾 denote the scale parameters. Then, 

by taking 

𝑡 = 𝜍 𝑥𝛿  and 𝑑𝑡 = 𝜍𝛿𝑥𝛿−1𝑑𝑥, the definition (7) with 𝑝 =
𝛾

𝜍
 𝛾 > 0;𝜍 > 0 ,𝑢 =

𝑚+𝛿

𝛿
 𝑚 + 𝛿 > 0 , and 

𝜈 = 𝑛 𝑛 > 0  yields 

𝛿𝜍
 𝑚+𝛿 

𝛿  𝑥𝑚+𝛿−1∅𝜔 𝛼,𝛽;−𝛾𝑥𝛿 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑;𝑘;−
𝜍𝑥𝛿

𝑛
 

∞

0
𝑑𝑥(24) 

=𝑛𝜆𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  𝑚𝑖𝑛 𝛾,𝜍,𝑚 + 𝛿,𝑛 > 0 . 

By virtue of integral formula (24), a class of probability density functions associated with the S-function 

can be defined by 

𝑓 𝑥 ≔  𝛿𝜍
 𝑚+𝛿 

𝛿 𝑛−𝜆𝑥𝑚+𝛿−1∅𝜔 𝛼,𝛽;−𝛾𝑥𝛿 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑; 𝑘;−
𝜍𝑥𝛿

𝑛
 

×  𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

 𝑥 > 0 , 

 

=0, elsewhere                                                                                                                  (25) 

Provided that the various parameters and variable x occurring in equation (25) are so constrained that 

the density function is always non-negative. It is evident that 

 𝑓 𝑥 𝑑𝑥 = 1,
∞

−∞
   (26) 
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𝑓 0 =

 
 
 

 
 
𝛿𝜍

1

𝛿𝑛−𝜆  𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
, 𝑘  

−1

, (𝑚 + 𝛿 = 1)

0 ,                                   (𝑚 + 𝛿) > 1  
 
 

 
 

 (27) 

𝑓 𝑥 → ∞  𝑎𝑠  𝑥 → 0+  𝑤𝑕𝑒𝑛 𝑚 + 𝛿 < 1  (28) 

lim𝑥→∞ 𝑓 𝑥 = 0  (𝛿 > 0), (29) 

and 𝑓 ′ 𝑥 =  
𝑚+𝛿−1

𝑥
− 𝛾𝛿𝑥𝛿−1 −

𝜍𝛿

𝑛
𝑥𝛿−1𝜓 𝑓 𝑥 ,      (30) 

where for convenience, 

𝜓 ∶=
𝜆Γ 𝑐 Γ 𝑑 Γ 𝑎+𝑘 Γ 𝑏+𝑘 

Γ 𝑎 Γ 𝑏 Γ 𝑐+𝑘 Γ 𝑑+𝑘 

3𝑅2 𝜆+1,𝑎+𝑘,𝑏+𝑘;𝑐+𝑘 ,𝑑+𝑘;𝑘;−
𝜍𝑥𝛿

𝑛
 

3𝑅2 𝜆 ,𝑎 ,𝑏;𝑐 ,𝑑 ;−
𝜍𝑥𝛿

𝑛
 

    (31) 

The formula (30) can be derived ,if we differentiate both sides of the equation(25) with respect to x 

logarithmically and apply the following formula
𝑑

𝑑𝑥
 3𝑅2  𝜆,𝑎, 𝑏; 𝑐, 𝑑;−

𝜍𝑥𝛿

𝑛
   

                = −
𝜆𝜍𝛿 Γ 𝑐 Γ 𝑑 Γ 𝑎+𝑘 Γ 𝑏+𝑘 

Γ 𝑎 Γ 𝑏 Γ 𝑐+𝑘 Γ 𝑑+𝑘 
𝑥𝛿−1

3𝑅2  𝜆 + 1,𝑎 + 𝑘, 𝑏 + 𝑘; 𝑐 + 𝑘,𝑑 + 𝑘; 𝑘;−
𝜍𝑥𝛿

𝑛
 (32) 

If we set 𝛼 = 𝛽,𝜔 = 1 𝑎𝑛𝑑 𝑏 = 𝑑 the results of this section reduce to the results due to Virchenko etal. 

[10]. 

Some statistical functions 

In this section, serval basic statistical functions associated with the probability density function 𝑓 𝑥  

defined by equation (25) will be evaluated explicitly. 

The 𝒓𝒕𝒉moment 

The 𝑟𝑡𝑕moment𝜇𝑟
′  about the origin of a continuous real random variable X with the probability density 

function 𝑓 𝑥  is given by 

𝜇𝑟
/
∶=  𝑥𝑟𝑓 𝑥 𝑑𝑥 =∶ 𝐸 𝑥𝑟 

∞  

−∞
 𝑟 ∈ 𝑁 ,(33) 

which on using equation(24) and definition (25),gives 

𝜇𝑟
/

= 𝜍−
𝑟

𝛿  𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

1 +
 𝑚+1 

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  𝑆  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽;

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

                                                      (34) 

In particular for r=1 the excepted value of random variable x (also referred to as the mean or first 

moment of X ) is obtained as 
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𝐸 𝑥 ≔  𝑥𝑓 𝑥 

∞

0

𝑑𝑥 

          =𝜍−
1

𝛿  𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
 𝑚+1 

𝛿
, 𝑛,𝜔

𝛾

𝜍
,𝑘  𝑆  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

(35) 

The moment generating function 

The moment generating function 𝑀 𝑡, 𝛿  of a continuous random variable X having the probability 

density function 𝑓(𝑥) is defined by 

𝑀 𝑡, 𝛿 = 𝐸[𝑒𝑡𝑥 ]:= 𝑒𝑡𝑥
∞

−∞
𝑓 𝑥 𝑑𝑥 

                                = 𝛿𝜍
 𝑚+𝛿 

𝛿 𝑛−𝜆  𝑥𝑚+𝛿−1∅𝜔 𝛼,𝛽;−𝛾𝑥𝛿 3𝑅2  𝜆,𝑎, 𝑏; 𝑐, 𝑑;𝑘;−
𝜍𝑥𝛿

𝑛
 

∞

0
𝑑𝑥  

×  𝑆  
𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
, 𝑘  

−1

 (36) 

Which itself the generalization of the result given by Saxena, Chena Ram, Naresh and Kalla [5] to which 

is reduce for 𝜔 = 1 𝑎𝑛𝑑 𝑏 = 𝑑. 

For 𝛼 = 𝛽,𝑘 = 𝜔 = 1 𝑎𝑛𝑑 𝑏 = 𝑑the result (36) reduce to Kalla et.al.[11]. 

For 𝛼 = 𝛽,𝑘 = 𝜔 = 𝑛 = 1 , 𝑏 = 𝑑 𝑎𝑛𝑑 𝑎 = 𝑐result (36) reduce Ghitany[12]. 

The Hazard rate function 

For a continuous random variable X having the probability density function 𝑓 𝑥 , the commulative 

distribution function 𝐹(𝑡) is given by 

𝐹 𝑡 ≔  𝑓 𝑥 𝑑𝑥 =:𝑝𝑟𝑜𝑏 𝑋 ∈  −∞, 𝑡  
𝑡

−∞
(37) 

That is by 

𝐹 𝑡 = 𝑆0
𝜍  𝑡𝛿  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  𝑆  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

(38) 

where we use the definition of (25) and (19). Thus by virtue of the relationship (21),the hazard (or 

failure)rate function h(t) is given by 
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𝑕 𝑡 ≔
𝑓 𝑡 

1−𝐹 𝑡 
=

  𝛿𝜍
 𝑚+𝛿 

𝛿 𝑛−𝜆𝑡𝑚+𝛿−1∅𝜔 𝛼,𝛽;−𝛾𝑥𝛿 3𝑅2  𝜆,𝑎, 𝑏; 𝑐,𝑑; 𝑘;−
𝜍𝑥𝛿

𝑛
 ×

 𝑆
𝜍𝑡𝛿
∞  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

         (𝑡 > 0)  (39) 

in terms of the complementary incomplete S-function defined by equation (20). 

In passing, we remark that the above derivations would also give the survival (or reliability) function 

𝑆∗ 𝑡  in the form 

𝑆∗ 𝑡 ≔ 1 − 𝐹 𝑡 =  𝑓 𝑥 𝑑𝑥
∞

𝑡

 

       = 𝑆
𝜍𝑡𝛿
∞  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  𝑆  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

 ( 𝑡 > 0)(40) 

 

The mean residual life (or remaining life expectancy) function 

For a continuous random variable X, the mean residual life (or remaining life expectancy) function K(t) is 

given by 

𝐾 𝑡 ≔ 𝐸 𝑋 − 𝑡 | 𝑋 ≥ 𝑡 =
1

𝑆∗ 𝑡 
 𝑆∗
∞

𝑡
 𝑥 𝑑𝑥 =

1

𝑆∗ 𝑡 
  𝑥 − 𝑡 𝑓 𝑥 
∞

𝑡
𝑑𝑥,                          (41) 

that is , by 

𝐾 𝑡 =
1

𝑆∗ 𝑡 
 𝑥𝑓 𝑥 
∞

𝑡
𝑑𝑥 − 𝑡  ,                                                                             (42) 

since  

𝑡

𝑆∗ 𝑡 
 𝑓
∞

𝑡
 𝑥 𝑑𝑥 =

𝑡

𝑆∗ 𝑡 
 1 −  𝑓 𝑥 

𝑡

−∞
𝑑𝑥 = 𝑡  ,                                            (43) 

where 𝑆∗ 𝑡  denotes the survivor ( or reliability ) function denoted by equation (40). 

By virtue of the definition (25), if we use substitution𝑧 = 𝜍 𝑥𝛿   𝑎𝑛𝑑 𝑑𝑧 = 𝜍 𝛿 𝑥𝛿−1𝑑𝑥, 

The integral in equation (42) can be evaluated as   

 

 𝑓 𝑥 𝑑𝑥
∞

𝑡
  =𝜍−

1
𝛿     𝑆

𝜍𝑡𝛿
∞  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 
𝑚+1

𝛿
+ 1,𝑛,𝜔

𝛾

𝜍
,𝑘  𝑆  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

1 +
𝑚

𝛿
,𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

        (44) 
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so that 

                 K(t) =  𝜍−
1
𝛿     𝑆

𝜍𝑡𝛿
∞  

𝜆, 𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 
𝑚+1

𝛿
+ 1,𝑛,𝜔

𝛾

𝜍
,𝑘  𝑆

𝜍𝑡𝛿
∞  

𝜆,𝑎, 𝑏; 𝑐,𝑑;𝛼,𝛽; 

1 +
𝑚

𝛿
, 𝑛,𝜔

𝛾

𝜍
,𝑘  

−1

− 𝑡       (45) 

In terms of the complementary incomplete S-function defined by equation (20). 

Finally, it is expected that the results of this paper may find some applications in physical problems due 

to occurrence of the 𝜔 − confluent hypergeometric function in the density function (25),which includes 

various density functions that are useful in those problems arising in probability models. 
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