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Abstract:We employ the Z-transform to give elementary proofs of the Sun’s binomial 

inversion formulae. 

 

Keywords: Stirling numbers, Z-transform, Sun’s binomial inversion, Bernoullinumbers. 

 

1.- Introduction 

 

The generating function for the Bernoulli numbers is given by [1-4]: 

 

∑
��

�!
� 
��� �� =  

�

����
 ,          (1) 

 

which for  � =
�

�
  allows to obtain the following Z-transform [5-7] for the sequence 

{
��

�!
 ,

��

�!
 ,

��

�!
 , … }: 

 
�

� 
(��/� − 1)�� =  �{ 

��

�!
 }.         (2) 

 

In Sec. 2 we determine the sequence { 
��

�!
 } such that: 

 

(��/� − �)�� = � �
��

�!
� ,        � ≠ 1,          (3) 

 

and in Sec. 3 we use (2) and (3) to deduce the Sun’s binomial inversion formulae [8-10]. 

 

2.- Determination of the quantities �� with the property (3) 

 

It is evident the identity: 

 
�

�
(��/� − 1)�� −

�

�
(��/� − �)�� = (1 − �)

�

�
(��/� − 1)�� ∙ (��/� − �)��,   (4) 
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where we can apply ���, (2) and (3) to obtain the recurrence relation: 

 

�� − � ���� = (1 − �) ∑ �
�
�

��
��� ������ ,        � ≥ 0,     (5) 

 

which for  � = 0 implies the value  �� = (1 − �)��. The expression (5) is equivalent to: 

 

� ���� = − (1 − �) ∑ �
�
�

��
��� ������ ,              � ≥ 1,      (6) 

 

and it allows determine the quantities  �� , in fact: 

 

�� = −(1 − �)�� ,        �� = (1 + �)(1 − �)�� ,        �� = − (�� + 4� + 1)(1 − �)��, …               

(7) 

 

If we remember the property [1]: 
�

�
����

[���]
= ∑ �

�
�

��
��� ��

[�]
���� ,         1 ≤ � ≤ �,      (8) 

 

involving the Stirling numbers of the second kind [1-3], then it is easy to obtain the following 

explicit solution of (6): 

�� =  ∑
(��)�  �!

(� � �)� � �
�
��� ��

[�]
 ,        � ≥ 0,        � ≠ 1,      (9) 

 

in agreement with the values (7);hence from (3) and (9): 

 

� �
�

�!
∑

(��)�  �!

(� � �)� � �
�
��� ��

[�]
� =  (��/� − �)�� .        (10) 

 

3.- Sun’s binomial inversion formulae 

 

   If we consider the binomial expression: 

 

�(�) = ∑ �
�
�

��
��� �(�) − � �(�),             � ≥ 0,      (11) 

 

then Sun [8-10] obtained the corresponding inversion formulae: 

 

�(�) =
�

���
∑ �

� + 1
�

���� 
��� �(�)������ ,           � = 1,     (12) 

 

�(�) = − ∑ �
�
�

��
��� �(�) ∑

�!

(���)���
��� 
��� ����

[�]
 ,          � ≠ 1;                              (13) 
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with the results deduced in Sec. 2 we can give elementary proofs of (12) and (13), in fact, from 

(11) for the case  � = 1: 

�(�) = ∑ �
�
�

��
��� �(�) − �(�)     ∴     �(0) = 0,            (14) 

 

where we apply the Z-transform to obtain: 

 

� �
�(�)

�!
� = � �

�(�)

�!
� � � �

�

�!
� − 1� ,              � �

�

�!
� = ��/�,                                        (15) 

then: 

� �
�(�)

�!
� = (��/� − 1)�� � �

�(�)

�!
�

(2)
=   � � �

��

�!
�  � �

�(�)

�!
�,                                      (16) 

such that:     

� � �
�(�)

�!
� = � �

�(�)

�! �
+

�(�)

�!  ��
+  

�(�)

�!  ��
+ ⋯ � = �{ 

�(���)

(���)!
 },                                          (17) 

 

hence (16) implies the binomial transform   
�(�)

�!
= ∑

�(���)

(���)!

�
��� 

����

(���)!
 which is equivalent to 

(12), q.e.d. 

  The Z-transform of (11), for the case  � ≠ 1, gives the relation: 

 

� �
�(�)

�!
� = � �

�(�)

�!
� � � �

1

�!
� − ��

(15)
= ���/� − �� � �

�(�)

�!
�, 

therefore: 

� �
�(�)

�!
� = (��/� − �)�� � �

�(�)

�!
�

(10)
= � �

1

�!
�

(−1)�  �!

(1 −  �)� � �

�

��� 

��
[�]

�  � �
�(�)

�!
�, 

 

which implies (13), q.e.d.           

 

Remark.- We can exhibit an alternative proof of (12), in fact,we know the relation [14]: 

 

∑ �
�
�

��
��� �

�
�

� ���� = �
�
�

� ����� + ����,��,           � ≥ � ≥ 0,                           (18) 

thus: 

� � �
�
�

�

�

��� 

�

��� 

�
�
�

� ���� �(�) = � �
�
�

�

�

��� 

���� �(�) + �
�

� − 1
� �(� − 1), 

therefore: 

� �(� − 1) = � �
�
�

�

�

��� 

� � �
�
�

�

�

��� 

�(�) − �(�)� ���� , 
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in agreement with (11) and (12) for  � = 1. 
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LRS Bianchi I Model with a Variable Λ-term in Self - Creation Theory of 
Gravitation in General Relativity 
Vimal Chand Jain1· Mahesh Kumar Yadav2· Muneshwar Hembram3 

 
 

Abstract 
 LRS Bianchi I cosmological model with a variable Λ-term under the framework of Barber’s 
self-creation theory of gravitation is investigated. To get a physical model of the universe, we 
have assumed that the metric potentials are functions of x and t both. The equation of state is 
considered as � = 3p. The results of the model are consistent within the observational limits. 
The physical and kinematical aspects of the model are also discussed. 
 
Keywords LRS Bianchi I ·Variable Λ-term · Self-creation · General relativity 
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1 Introduction 

It is well known that the Bianchi type-I space-time has a fundamental role in constructing 
cosmological models suitable for describing the early stages of evolution of universe. The 
present-day universe is satisfactorily described by homogeneous and isotropic models given by 
the FRW space-time. The universe in a smaller scale is neither homogeneous nor isotropic nor 
do we expect the universe in its early stages to have these properties. To unify gravitation and 
many other effects in the universe, several modifications of Einstein’s general theory of 
relativity have been proposed and extensively studied by many cosmologists.  
Ellis and MacCallum [1] have studied a class of homogeneous space-time in general relativity. 
Roy and Singh [2] have investigated Bianchi type-I non-static cosmological model filled with 
disordered radiation of perfect fluid. Jain et al. [3] have presented Bianchi type-I cosmological 
model with a varying Λ- term in self-creation theory. Bali et al. [4] have investigated a locally 
rotationally symmetric (LRS) Bianchi type-II space-time filled with string dust fluid where the  
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shear is proportional to the expansion. Bianchi type-I magnetized radiating cosmological 
model in self-creation theory of gravitation is investigated by Jain and Jain [5].   
The cosmological term-Λ provides a repulsive force opposing the gravitational pull between 
the galaxies. Linde  [6] has suggested that Λ is a function of temperature and is related to the 
spontaneous symmetry breaking process, and therefore it could be a function of time. Recent 
investigations on the cosmological constant problem and consequence on cosmology with a 
time –varying cosmological constant are presented by many authors such as Ratra and Peebles 
[7], Sahni and Starobinsky [8] and Dolgov [9] etc. It is suggested that in the absence of any 
interaction with matter or radiation, the cosmological term-Λ remains a constant. The existence 
of the cosmological term-Λ is favourable to recent supernovae (SNe) Ia observations [10, 11] 
and it is also consistent with the recent anisotropy measurements of the cosmic microwave 
background (CMB) made by WMAP experiment [12].  
In an attempt to produce a continuous creation theory, Barber [13] proposed two cosmological 
theories. In these theories the universe is seen to be created out of self-contained gravitational, 
scalar and matter fields. Barber’s theories allow the scalar field to interact with the particle and 
photon momentum four vectors, which cannot happen in the Brans-Dicke theory [14] which 
develops Mach’s principle in a relativistic framework, by assuming interaction of inertial 
masses of fundamental particles with some cosmic scalar field, coupled with the large-scale 
distribution of matter in motion. Thus,the Barber’s first theory is a modified Brans-Dicke 
theory. The first theory was rejected on the grounds of a gross violation of the equivalence 
principle, which resulted in disagreement with experiment. Later Brans [15] also showed that it 
was internally inconsistent. Barber’s second theory retains the attractive features of the first 
theory and overcomes previous objections. These modified theories create the universe out of 
self-contained gravitational and matter fields. In the second theory, the gravitational coupling 
of the Einstein’s field equations is allowed to be a variable scalar on the space-time manifold. 
In recent years, Sahu and Mohanty [16], Singh and Kumar [17] and Venkateshwarlu et al. [18] 
have studied Barber’s second self-creation theory of gravitation in various contexts. Pradhan et 
al. [19] have evaluated LRS Bianchi type-I universe in Barber’s second self-creation theory. 
Adhav et al. [20] have obtained axially symmetric Bianchi type-I model with massless scalar 
field and cosmic strings in Barber’s self-creation cosmology. Jain and Jain [21] have 
investigated Bianchi type-I radiating model in Lyra Geometry and self-creation cosmology 
with constant deceleration parameter. Astankar et al. [22] and Tyagi [23] have found that the 
physical parameters are dominated by Barber’s scalar function ϕ while studying LRS Bianchi 
type-II with bulk viscous string cosmological model. 
Dark energy plays important role in cosmological model in current scenario which is studied 
by many authors in the framework of self - creation cosmology. Ram et al. [24] have discussed 
Kantowski-Sachs cosmological model. Rao and Prasanthi [25]  for Bianchi type V, Katore and 
Kapse [26] for Bianchi type - I with polytropic equation of state. Jain and Jain [27]   have 
studied self - creation cosmology in the context of Bianchi type  - VI0 with Dark energy and 
constant deceleration parameter. They find universe exhibits transition from deceleration to 
acceleration. Singh and Beesham [28] have investigated LRS Bianchi type I models with 
deceleration parameter � = � − 1, for various values of  �. 
Bertolami [29]  have studied the second order phase transition and inflation that is caused by 
scalar field. 
In this paper LRS Bianchi type-I cosmological model for disordered radiation is investigated 
for the time-dependent cosmological term-Λ, in Barber’s second self-creation theory of 
gravitation.  
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This paper is organized as follows: The metric and field equations are considered in sect. 2. 
Solutions of field equations are obtained in the sect. 3. The sect. 4 deals with some important 
physical and geometrical features of the model. In the last section i.e., sect. 5, conclusions are 
given. 
 
2 The Metric and Field Equations  
The FRW model has the disadvantage of being unstable near the singularity and it fails to 
describe early universe. Therefore, Bianchi Type I models are undertaken to understand the 
early universe on present day observations, hence considering LRS Bianchi type–I metric in 
the form 
 
��� = ��� − ����� − ��(��� + ���)          (2.1)   
Where the metric potentials A and B are functions of x and tboth.The field equations given by 
Barber [13] are 

��
�

−
�

�
���

�
= 8������

�
+ Λ��

�
,        (2.2) 

and ���
� =

��

�
��,           (2.3) 

where  ���
�  is the invariant d’Alembertian and the contracted tensor T is trace of the energy 

momentum tensor, that describes all non-gravitational and non-scalar field matter and energy. 
Here � is a coupling constant to be determined from experiments. 
The energy momentum tensor has the form 

��
�

= (� + �)���� − ���
�
,           (2.4) 

where �� is the four-velocity vector of the fluid and � and � are the pressure and energy 
density, respectively. 
Corresponding to metric (2.1), the four-velocity vector satisfies the relation 

��
�
���� = 1                                                                                                            (2.5) 

By adoption of co-moving coordinates, the field equations (2.2) and (2.3) for line element (2.1) 
is written as 

2
���

�
+

��
�

�� −
��

�

���� = −8����� + Λ,                                                                     (2.6) 

��� −
����

�
= 0                                                                                                       (2.7) 

���

�
+

���

�
+

����

��
−

���

���
+

����

���
= −8����� + Λ                                                   (2.8) 

2
���

���
− 2

����

���
+

��
�

���� − 2
����

��
−

��
�

�� = 8����� + Λ                                            (2.9) 

and, ��� +
����

�
+ 2

����

�
+

����

�� − 2
����

���
−

���

�
= (� − 3�)

���

�
.                      (2.10) 

Here 1 and 4 indicate partial differentiation with respect to � and � respectively. 
3 Solutions of the Field Equations 
Equation (2.7) on integration leads to 
� =

�

�
��,                                                                                                                (3.1) 

where � is an arbitrary function of � only. 
Using equation (3.1) in equations (2.7) and (2.9) we get 
�

��

�

��
�

���

�
� +

��

��

�

��
�

��

�
� +

��

�� �1 −
���

���
� = 0                                                           (3.2) 

To get the deterministic solution, we assume that 
��

�
 as a function of � alone, then A and B are 

separable in � and �. Therefore, the equation (3.2), after integration, yields 
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� = �(�)�(�),                                                                                                       (3.3) 
where � is an arbitrary function of �. 
From equation (3.1) and (3.3), we have  

� =
��

�
�.                                                                                                                (3.4) 

Therefore, the metric (2.1) leads to 
��� = ��� − ��(�)[��� + ���(��� + ���)]                                                        (3.5)   
Using equations (3.3) and (3.4) in equations (2.6), (2.9) and (2.10) we have 
����

�
+

��
�

��
−

�

��
= −8����� + Λ                                                                           (3.6) 

�

��
−

���
�

��
= 8����� + Λ                                                                                       (3.7) 

��� +
�����

�
−

����

����
−

��

����

�

��
�

��

��
� =

���

�
(� − 3�).                                             (3.8) 

For disordered radiation, equation of state is, 
� = 3�                                                                                                                    (3.9) 
We assume that the scalar field  (�)depends on cosmic time � only, then equation (3.8) with 
the use of equation (3.9) leads to 

��� +
�����

�
= 0                                                                                                   (3.10) 

This on twice integration leads 

� = �� ∫
�

��
�� + ��                                                                                            (3.11) 

Where  �� and �� are constants of integration. 
To get the function �(�) we assume the deceleration parameter to be constant i.e. 

� = −
����

��
� = ��(constant)                                                                                 (3.12) 

Where �(�) = (���)� �⁄  is the overall scale factor. Here the constant is taken as negative i.e. it 
represents an accelerating universe.  
The equation (3.12) can be written as 
���

�
+ ��

��

�
= 0                                                                                                     (3.13) 

The solution of equation (3.13) yields 

�(�) = (�� + �)
�

���                                                                                              (3.14) 
Where  
� = ��(1 + ��) and  � = ��(1 + ��)                                                                 (3.15) 
Here �� and �� are constants of integration. Clearly equation (3.14) implies that the condition 
of expansion is 1 + �� > 0. 
Using equation (3.14) in equation (3.11) we get 
� = �(�� + �)� + �� = ��� + ��                                                                    (3.16) 
where 

� =
��

��
  and � =

����

����
                                                                                          (3.17) 

Clearly the scalar field remains finite throughout the evolution of universe. It has a singularity 
at T = 0 with � < 0 or �� < 0. 
Metric (3.5) reduces to 

��� = ��� − (�� + �)� ����⁄ [��� + ���(��� + ���)]                                      (3.18)   
After suitable transformation of coordinates, equation (3.18) reduces to 

��� =
�

��
��� − ��[��� + ���(��� + ���)]                                                    (3.19)   
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Equation (3.19) represents the LRS Bianchi type-I spatially homogeneous and anisotropic 
model for disordered radiation in Barber’s self-creation theory of gravitation. The space time 
exhibits POINT-TYPE singularity (MacCallum, 30) at � = 0 i.e. � = − � �⁄  with  � > 0, 

where � =
�

����
 . 

4 Some Physical and Geometrical Features 
After using equation (3.9) in equations (3.6) and (3.7), the pressure, energy density and time 
dependent cosmological term are given by 
 

� =
�

����
���� + ��� ���

� �
��

�
− 1� + �

���
�����,                                                   (4.1) 

The energy density, 

� =
�

����
���� + ��� ���

� �
��

�
− 1� + �

���
����� ,                                                 (4.2) 

The energy conditions [31] 
� + p ≥ 0 , � − p ≥ 0 and  � + 3p ≥ 0 , leads to 

� + � =
�

����
���� + ��� ���

� �
��

�
− 1� + �

���
����� ≥ 0     (4.3) 

� − � =
�

����
���� + ��� ���

� �
��

�
− 1� + �

���
����� ≥ 0     (4.4) 

� + 3� =
�

���� ���� + ��� ���
� �

��

�
− 1� + �

���
����� ≥ 0     (4.5) 

The cosmological term, 

Λ = −
�

�
����

� �

��
 .                                                                                                  (4.6) 

The scalar of expansion calculated for the flow vector �� is given by 

� = 3
��

�
                                                                                                                  (4.7)  

The three components of  Hubble parameters (��, � = 1,2,3) are given by 

�� = �� = �� =
��

�
                                                                                               (4.8) 

Hence the Hubble parameter H is given by 

� = 3
��

�
                                                                                                                 (4.9) 

The anisotropy parameter is defined by 

�̅ =
�

�
∑ �

���

�
�

�
�
��� ,                                                                                                (4.10) 

Where Δ�� = �� − � (� = 1,2,3) 
For our model the anisotropy parameter is given by 

�̅ =
�

�
                                                                                                                    (4.11) 

Which is constant. 
The spatial volume (V) is evaluated as 

� = �� = �−���� = (�� + �)
�

���� = �
�

����                                                     (4.12) 

The expansion velocity ��  is given by 

�� =
�

(����)

�

�
��

����

                                                                                                   (4.13)  

For the model (3.17), the particle horizon exist because 
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∫
��

�(�)

�

��
=

(����)

���
�(�� + �)

��
�����

��

�

                                                                         (4.14) 

is a convergent integral. 
The ratio of energy density to the square of the expansion scalar is calculated as 

�

�� =
�

�����
� �������� + ��� ���

� �
��

�
− 1� + �

���
�����                                         (4.15) 

 

 
In the model we observe that the spatial volume V is zero at T = 0 i.e. at t = t0 and scalar 
expansion �is infinite at initial singularity t = t0 which shows that the universe starts evolving 
with zero volume and reaches infinite rate of expansion at t = t0. Initially at t = t0 the pressure p 
and energy density  � are infinite. As t increases, the spatial volume V increases but the scalar 
expansion decreases. Thus, the expansion rate decreases as time increases. As  � → ∞, the 
spatial volume V becomes infinitely large. 
It is worth mentioning that Λ is inversely proportional to the square of time T. Clearly � → 0, 
gives  Λ → ∞, and � → ∞, gives Λ → 0 . The cosmological term- Λ  has constant value with in 
the range 0 < � < ∞. The value of cosmological constant is in an excellent agreement with 
observations [32,11] of type Ia Supernovae (SNe). The main conclusion of these observations 
is, that the expansion of the universe is accelerating and the cosmological term was very large 
at initial times which relaxes to a genuine cosmological constant with due course of time.  
The expansion velocity S4 is given by diverges as � → 0, i.e., � → ��. Hence the expansion of 
the universe is infinite as we approach towards � → ��. When k3 = -1, i.e., q = -1 (accelerating 

universe), 
�

�� becomes constant, which means the energy density is proportional to the square 

of the scalar expansion. Hence the model approaches isotropy. 
All the parameters �, �, ��, ��, ��, � and � tend to zero when T → ∞. Therefore, the model 
essentially gives an empty universe for large values of T. All the physical quantities remain 
finite and physically significant at finite region of the universe. In case � → 0, the solutions 
approach Einstein’s general theory of relativity in all respects and the model represents non-
rotating and expanding universe with a big - bang start. 
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Concluding Remarks 
In this paper, we have obtained LRS Bianchi type-I cosmological model with a varying Λ-term 
for disordered radiation within the framework of Barber’s second self-creation theory. From 
equation (4.7), we conclude that the model will represent an expanding universe. While solving 
Barber’s field equations for disordered radiation, we have assumed deceleration parameter as 
constant. It is also observed that the Barber’s scalar field � is constant at � → ��i.e., � → 0 with 
� > 0 or �� > 2 for disordered radiation universe model.   
The anisotropic expansion of the universe with time is evident from the model (3.19). The 
value of cosmological constant Λ is in an excellent agreement with observations [32, 11] of 
type Ia Supernovae (SNe). The main conclusion of these observations is that the expansion of 
the universe is accelerating and the cosmological term was very large at initial times which 
relaxes to a genuine  cosmological constant with due course of time. 
The model obtained in this paper is of considerable interest and may be useful in Barber’s self-
creation theory to study an accelerating model of the universe. It is found that if � → 0 the 
Barber’s self-creation theory tends to general theory of relativity in all respects. 
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Abstract: 

Dynamic Evolution of discrete 2-D nonlinear Bogdanov system has been studied in detail. 
Characteristic Bogdanov–Takens bifurcation observed by varying a certain parameter of the 
map. Pitchfork bifurcation observed at certain parameter space. During evolution this map 
shows chaotic behavior and interesting chaotic attractors emerged. Chaotic motionidentified 
through patterns of attractors and also, by positivity of Lyapunov exponents. Presence of 
complexity observed indicating internal multicomponent structure, the map shows complexity 
property which is different from chaos. All measurable quantities obtained through numerical 
simulations are represented through graphics and the results obtained are discussed with proper 
justification. 
 
�. Introduction: 
Almost all real systems are nonlinear and their evolution do not follow any definite rule. While 
solving nonlinear problems one has to adopt some specific rules.Internally many nonlinear 
systems structurally multicomponent and in such systems individual elementsevolve by their 
own rule which cannot be determined by deterministic rule. Only probabilistic rule can explain 
evolution criteria of such particles.Such systems termed as complex systems. During evolution 
a complex system exhibits chaos in some parameter space but also other phenomena called 
complexity. Complexity is due to the interaction among multiple agents within the system 
displayed in the form complex-patterns within periodic windows in bifurcation diagrams, form 
of existence of multiple attractors, bi-stability, intermittencyetc., [1–7].Study of complexity 
means investigating the dynamics that emerging from a collection of interacting parts. 
 
Appearance of chaos most appropriately measured by Lyapunov exponents, (LCEs), [8–12]: if 
at any state measurement of LCE > 0 the evolution becomes chaotic and if LCE < 0 the 
evolution becomes regular. Presence of complexity in any system measured by increment in 
topological entropy: more increase, (or fluctuations), in topological entropy signifies the 
system is more complex [13 - 17]. 
 
The Bogdanov map, named after Russian mathematician Rifkat Ibragimovich Bogdanov. 
Bogdanov was known for his contributions to nonlinear dynamical systems, bifurcation theory 
and differential geometry.The Bogdanov map is a 2D planar quadratic map, conjugate to the 
Hénon-area-preserving map in its conservative limit, [18–20]. In dynamical systems theory, the 
map displays interesting chaotic attractorsand show bifurcations that indicate presence of 
complexity within the system. 
Objective of the present article is to dynamic investigation of Bogdanov map and explore its 
evolutionary property. In the process of study bifurcation diagrams drawn by varying certain 
parameter while assigning values of other parameters. Analysis performed on bifurcations  
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including those of periodic windows appearing within chaotic region indicating complexity 
within the system. Numerical calculations extended to obtain some interesting chaotic 
attractors and to calculate Lyapunov exponents (LCEs). Simulation works performed to 
calculate topological entropies as measure of complexities. Results obtained displayed through 
different graphics. Finally, a brief discussion added on the study done. 
 

�. Description of Bogdanov Map: 
The map is a planer two-dimensional quadratic map and conjugate to the Hénon map in its 
non-dissipative limit. It is given by 

���� = �� + ���� 
���� = ��+ ∈ �� + ���(�� − 1) + �����     (1) 

 

Here, � and μ are related to the Bogdanov vector field, while k plays the role of step length in 
the discretization, such that for a small k, the map behavior will resemble the original vector 
field. 
 
Fixed points are real steady state solutions of a dynamical system. System (1) has fixed points 
��

∗(0, 0) and ��
∗(1, 0)irrespective of whatever values parameters∈ , �, �  may assume.      

 

Jacobian matrix of map (1) is   � = �
1 + 2�� − � + �� 1+∈ +��

2�� − � + �� 1+∈ +��
� . 

            (2) 
 

(�)At ��
∗(0, 0) this Jacobian matrix is   �� = �

1 − � 1+∈
−� 1+∈

�   (3) 

 
Then, we find, Trace(��) = 2+∈ −�  and  |��| = 1+∈. Hence the fixed point ��

∗(0, 0) is non-
hyperbolic on the line (∈, �), [20]. Eigenvalues corresponding to fixed point ��

∗(0, 0)obtained 
as 
 

  ��,� =
�

�
�(2+∈ −�) ± �(∈ −�)� − 4��     (4) 

(��) At ��
∗(1, 0), Jacobian matrix (2) reduces to 

  

   �� = �
1 + � 1+∈ +�

� 1+∈ +�
�      (5) 

 
Here, again we have Trace(��) = 2+∈ +� + �and |��| = 1+∈ +�. This is equivalent to the 
earlier case of the fixed point that��

∗(0, 0) by certain adjustment within parameters, [19], and 
so ��

∗(1, 0) is non-hyperbolic. Attractors and orbits of different initial values around the fixed 
points are interesting and play significant role defining dynamics of map (1). 
 
For values of ∈ =  0, � = 0 and� = 1.2 , the fixed point ��

∗(0, 0)shows neutral type of stability 
and behaves like a center. A set of orbits around this point provide very interesting criteria. 
For 20 chosen initial point around (0, 0), evolving orbits are drawn and shown in Figure 1. 
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 Figure 1: Orbits around fixed point ��

∗(0, 0) when ∈ =  0, � = 0 and� = 1.2. 
 
For specific values of parameters ∈, �, �evolutionary dynamics of map (1) follows: 
 
�. Bifurcation Analysis: 
For k = 0.2, � = 3 and −2.5 ≤ � ≤ −1.0, the system evolves into Pitchfork type of bifurcation, 
Figure 2(�), which is regular and two periodic. Regularity justifies from the time series plots 
and phase plot for � = 0.2, � = 3, � = − 2.0, Figure 2(�). The phase plot shows only two 
points that corresponds to the 2-periodic motion. 
 

 
Figure 2(a): Pitchfork Bifurcation of map (1) for � =  0.2,m =  3 and −2.5 £ ∈ £ − 1.0. 
 

 
Figure 2(b):Time series curves and a phase plot � = 0.2, � = 3, � = − 2.0. 
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Then, bifurcation diagrams of map (1) drawn for values � = 1.44,m = −0.1 and varying 
parameter ∈ as0.0001 £ ∈ £ 0.0045 and shown in Figure 3(�). Also, by varying parameter �, 
0.1 £� £ 1.8 and fixing values ∈ =  0.02,m =  −0.3 bifurcation diagram drawn and shown in 
Figure 3(�). In both of these cases, periodic windows appearing within chaotic region; 
period−5 window in Figure 3(�) and period−6 window in Figure 3(�). These are indication 
of presence of complexity within the system. 
 

 
Figure 3(�): Bifurcation diagrams of map (1) for� = 1.44,m = −0.1. 
 

 
Fig. 3(b): Bifurcation of map (1) for ∈ =  0.02,m =  −0.3 and 0.1 £� £ 1.8. 
 
�. Attractors: 
Regular 2 −periodic attractors already shown in Figure 2(b). Fork = 1.44,  = - 0.1 and 
varying� as shown, interesting chaotic attractors drawn for Bogdanov system (1) and presented 
in Figure 4 and in Figure 5. 
 

 
Figure 4: Attractors of map (1) for k = 1.44,  = - 0.1 and different values of ε as shown. 
 



17 

GANITA SANDESH, Vol. 38 (June & December, 2024) 

 

 
 

  
Figure 5: Chaotic attractors for ∈= 0.2, � = −0.3 and varying values of�. 
 

�. Lyapunov Exponents: 
In case of chaos, system shows sensitivity to initial conditions, i.e., two trajectories originated 
extremely close to each other show divergence behavior during long term evolution.Lyapunov 
exponents (LCEs) proposed to measure exponential separations of such orbits,[21 − 24]. If at 
any state LCE > 0 the evolution becomes chaotic and if LCE < 0 the evolution becomes 
regular.  
In case of Bogdanov system (1), there are cases when the initial evolution is chaotic (LCEs > 
0), but in the long-term evolution, such motion converted into regularity (LCE< 0). This shown 
in Figure 7, for � = 1.76, m = −0.1 and ∈= 0.02. Here,a chaotic attractor, figure (a), shown in 
the phase plane and figures (b), (c), (d) are LCE plots; figure (c) plotted in certain short range 
of evolution whereas (d) during long-term evolution. 
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Figure 6: Plots of Lyapunov exponents (LCEs) for chaotic attractors for � = 1.44,m = −0.1 and values 
of ∈= 0.0005 and ∈= 0.0015. 
 
 

 
Figure 7:Showing initial chaotic motionfor � = 1.76,m = −0.1 and ∈= 0.02 regularizes after long 
term evolution.  

�. Topological Entropies: Measure of complexity. 
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Periodic windows appearing in bifurcation diagrams, Figure 3(a) and Figure 3(b), clearly 
indicating presence of complexity in Bogdanov system (1). During evolution their individual 
elements evolve in their own independent way and display mixed properties nonlinearity, 
chaos as well as complexity. Earlier studies made on this system, [20, 21], also indicating 
occurrence of Hopf bifurcation and multistability within very small parameter ranges. So, the 
study must be performed with some new perspectiveand the law of probability be applied to 
describe the rate of mixing of evolutions.By this way one measures the exponential growth rate 
of the number of distinguishable orbits as time advances.The topological entropy, (also called 
Kolmogorov – Sinai entropy, [25]),provides measure the presence of complexity in the 
system.We define topological entropyas a nonnegative number which measures the 
complexity of the system. 
 
 In order to explain method to measure topological entropy, consider a finite partition of a state 
space X denoted byP =  { A�, A�, A�, . . . . , A�}. Then a measure μ on X with total measure 
μ(X)  =  1 defines the probability of a given reading as  
 

 p� =  μ(A� ) , i =  1, 2, . . , N.          (6) 

Then the entropy of the partition be given by 

 H(P) = − ∑ p�Logp�
�
���         (7) 

 

 
 

  
Figure 8: Plots of topological entropies; (a): � = 1.0, � = 0.2 and − 2.5 ≤  � ≤  −1.0, (b) � =
−0.1, � = 1.44 and0.001 ≤  � ≤  0.0045 and (c) � = −0.1, � = 0.02 and 0.1 ≤ � ≤ 1.7. 
 
Above figure, Figure 6, represents plots of topological entropies for three cases of map (1);  
(a): � = 1.0, � = 0.2 and − 2.5 ≤  � ≤  −1.0, (b) � = −0.1, � = 1.44 and 0.001 ≤  � ≤
 0.0045 and (c) � = −0.1, � = 0.02 and 0.1 ≤ � ≤ 1.7. One observes in figure (a) significant 
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 increase of topological entropy, in figure (b) significant but constant increase of topological 
entropy and in figure (c) significant and fluctuating increase in topological entropy.  
 
�. Concluding Remarks: 

In this article, specific bifurcations in quadratic type of Bogdanov map investigated. The 
evolution of chaotic attractors, which appear or disappear by contact bifurcations, with their 
own basin boundary has been observed. The system evolves into pitchfork bifurcation for 
values of  � =  0.2, m =  3 and −2.5 £ ∈ £ − 1.0 , Figure 2(a).Interesting attractors, Figure 4 
& Figure 5, drawn for map (1) in some parameter space. In some cases, the motion of the map 
display chaos, but in long term evolution, such motion turns into regularity, (see Figure 7). 
This shown by calculating LCEs by using Mathematica codes by Martelli, [28]. Periodic 
windows, of period five and six (Figure 3(a) and Figure 3(b)), appearing within chaotic region 
indicating presence of complexity in the system. Topological entropies calculated as measure 
of complexity and presented in Figure 8. Topological entropy has significant value even if the 
system is not chaotic. 
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Abstract:We give an elementary proof of an identity involving the Euler totient function and 

Ramanujan  

                 sums, obtained by Gallego-Torromé, and we realize its application to Möbius and 

Pillai functions. 
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1.- Introduction 

 

Here we show the relation: 

 

�(�) = �(�, �) + 2 ∑ ����(
���

�
)���

���,   (�,�)��  ,       � ≥ 0,    � ≥ 1,   (1) 

 

involving the Euler’s totient function [1-6] and Ramanujan sums [2, 5, 7-9]. For the case  

� = 2�, (1) gives the identity obtained by Gallego-Torromé [10]. 

 

2.- Proof of the property (1) 

 

In fact, by the definition of Ramanujan sums [2, 5]: 

 

�(�, �) = ∑ �� ����/����
���,   (�,�)�� = ∑ ��� �

����

�
����

���,   (�,�)�� = ∑ �1 −���
���,   (�,�)�� 

2 ���� �
���

�
��,           (2) 

 

but �(�) = ∑ 1���
���,   (�,�)��  , then (2) implies (1), q.e.d. 

 

   Now we accept that n and m are relatively prime, that is, (�, �) = 1, then (1) takes the form: 

 

�(�) = �(�) + 2 ∑ ����(
���

�
)���

���,   (�,�)��  ,       � ≥ 1,    � ≥ 1,                               (3) 

 

with the presence of Möbius function [2, 4, 5, 11, 12]. If  �/� then (�, �) = 1 and (3) gives 

the expression: 
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�(�) = �(�) + 2 ∑ ����(
���

�
)���

���,   (�,�)��  ,       � ≥ 1,                                        (4) 

 

where we can apply the Gauss identity  ∑ �(�) = ��/�   and  ∑ �(�) = ��(�)�/�  to obtain the 

property: 

 

� = 2 ∑ ∑ ����(
���

�
)���

���,   (�,�)�� �/� ,    � ≥ 1,    � ≥ 2,   (�, �) = 1;                            (5) 

 

if n is a prime number, then from (5): 

 

� = 2 ∑ ����(
���

�
)

���
���,   (�,�)��  ,         � ≥ 1,    � ≥ 2,   (�, �) = 1.   (6) 

 

This result (6) also can be deduced from (3)because �(�) = � − 1and  �(�) = −1. 

 

   We multiply (4) by 
�

�
and after we applyv∑�/� to obtain the following expression for the 

Pillai’s function [2, 13]: 

 

�(�): = ∑ (�, �)�
��� = ∑

�

�
 �(�) =�/�  �(�) + 2 ∑

�

��/� ∑ ����(
���

�
)���

���,   (�,�)�� ,     (�, �) =

1,(7)   

 

because  �(�) = ∑
�

�
 �(�).�/�  
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Abstract 
The Bianchi type V cosmological model for Bulk viscous barotropic fluid with variable 
gravitational constant [G(t)], and the variable cosmological constant [ Λ(t) ], in presence of 
magnetic field is investigated. To get a determinate model, we impose a physically viable 
condition between metric potentials. We have also used, � = ��, and � = ���� where � is 
energy density, � is shear viscosity,H is the Hubble parameter, and � = � − 3�� with   
0 ≤ � ≤ 1. Some physical and kinematical characteristics of the model are also discussed . 
 
Keywords: Bianchi Type V models; Varying G;Varying cosmological constant; Magnetic 
field 
 
 
1  Introduction 
 
The sign of curvature for Bianchi type-V space time is negative so it represents a model of 
open universe [1].The Open universes (k = - 1) are examples of the low density models. The 
natural generalization of Friedmann – Robertson – Walker models (k = - 1) lead to the Bianchi 
type – V space-time [2]. As a generalization of open universe, Bianchi type – V models are 
interesting to study because these have richer structure, physically as well as geometrically 
[3].A barotropic fluid has pressure and density that are connected by a state equation which 
does not include temperature as a dependent variable. The equation of state of perfect fluid can 
be written as p = p(ρ)   or  ρ = ρ(p). A specific example of barotropic fluid [4] is one with a 
linear equation of state such asp = γρ,  0 ≤ γ ≤ 1 .  
The magnetic field is known to be present in galactic and intergalactic areas. According to 
Melvin [5], matter was strongly ionized during the evolution of the cosmos, but as the universe 
expanded, it became smoothly linked with the field and formed neutral matter. The current 
magnetic field strength is very low. This strength might have been noticeable in the early 
universe. So at that time,isotropy break down resulted, due to the presence of significant 
magnetic field [6]. Therefore it is evident that the matter fields, such as magnetic fields have a 
profound influence on the evolution of the universe [7]. 
 
 
 
 
 
∗Corresponding author, E-mail: yadav1976mk@gmail.com 
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The incorporation of an electromagnetic field and matter into the space-time of Bianchi type-V 
with equation of state � = �, has been studied  by Ftaclas and Cohen[8]. Lorenz[9]hasstudied 
an exact Bianchi type-V tilted cosmological model with matter and electromagnetic field.Singh 
[10] has investigated the Bianchi type-V cosmological solutions of massive strings in the 
presence and absence of the magnetic field. Bali and Jain [11]have studied the Bianchi type V 
magnetized string dust cosmological model for perfect fluid distribution. Bali [12]has 
investigated Bianchi Type V magnetized string dust universe with variable magnetic 
permeability. Kumar and Srivastava[13]have studied some new aspects of the Bianchi type-V 
space time.Billyard et al. [14]have studied scalar field cosmologies with barotropic matter 
models of  Bianchi class B.Bali and Sharma [15]have analyzed  tilted Bianchi type  I 
cosmological models for barotropic perfect fluid in general  relativity.The Bianchi type-V 
models have also been investigated by a large number of authors viz. [1, 16, 17, 18]. 
 
In Einstein’s field equations, the Newtonian gravitational constant G, and the cosmological 
constant Λ  both are allowed to be included. As a consequence, the G acts as a coupling 
constant for geometry and matter.  The “Zwicky Theory”, was proposed by Milne [19,20] in 
which  the red shift spectra of distant galaxies were considered as a function of time scale 
factor variation with the assumption that the G depends on cosmological time t . Dirac's “Large 
Number Hypothesis’’ [21] is the basis for cosmologies in which G decreases as time increases. 
In 1917, Einstein introduced the cosmological constant Λ, as a motivation to consider universal 
repulsion necessary to keep the universe static. The cosmological constant problem [22] has a 
solution through Weinberg’s [23] suggestion that the Λ should be a function of temperature so 
that it may be made related to the spontaneous symmetry breaking. FRW cosmology is studied 
in such a way that the models with a cosmological constant seem more interesting  
[24].Beesham [25] points out that the observations suggests that the varying Gravitational 
constant G is inversely proportional with respect to time t. Rahman [26] has studied varying  
Gravitational constant G and cosmological constant Λ, and obtained that G increases, and Λ 
decreases with time. Berman [27] and Kallinga [28]have also found that the value of 
cosmological term at early universe was very high. Bali and Tinker [29]haveinvestigated the 
Bianchi type-V bulk viscous barotropic fluid cosmological model with variable gravitational 
constant G and the cosmological constant Λ. Borkar et al. [30] have studied Bianchi type I bulk 
viscous barotropic fluid cosmological model with varying Λ involving a functional relation on 
Hubble parameter in self-creation theory of gravitation. Chaubey and Shukla [31]have 
discovered that the cosmological constant Λ is a positive decreasing function of time. This is 
supported by recent Supernovae Ia observations.Chaubey et al. [32]have discussed a general 
class of Bianchi cosmological models in the presence of dark energy with variable Λand G 
under the framework of viscous cosmology and found that Λand G are linear functions of time t 
with negative slope.Recently Dixit et al.[33]have studied the particle creation in FLRW higher 
dimensional universe with gravitational and cosmological constants. Tiwari et al. [34]have 
studied accelerating universe with varying Λ in f(R, T) theory of gravity. Many author’shave 
discussed that the gravitational constant G and cosmological constant Λ are 
~ ��� (���� ~���).Recently  Bali and Tinker [29]have studiedBianchi type-V bulk viscous 
barotropic fluid cosmological model with variable G and Λ.Naidu et al. [35]have investigated 
Bianchi type-V bulk viscous string cosmological model in f (R,T ) gravity with the bulk 
viscosity. Tiwari and Singh [36] have analyzed Bianchi type - V cosmological models with 
perfect fluid in presence of varying G and Λ  and observe that the solutions favor the  Λ CDM 
model. Goswami et al. [37] have also studied the existence of Λ- dominated anisotropic  
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universe filled with magnetized strings. Motivated by the above, we are presenting a varying G 
and Λ models in presence of Magnetic Field.  
The organization of this paper is as follows: In section 2, we have established Einstein field 
equation. In next section 3 we have solved them  using� = ��, � = ���� and � =
�� , (0 ≤ � < 1).In section 4 we finds physical parameters, and geometrical features of the 
model. The physical behavior of the modelsare analyzed in section 6. Conclusion of the paper 
is presented section 7.  
 

2. Bianchi Type-V Model and Field Equations: 
 
Let us consider Bianchi Type V model representation in the form 
 
��� = −��� + ����� + ���(����� + �����) .      (1)  

Einstein's Field Equation is given by 

��
�

−
�

�
���

�
= −8����

�
+ Λ��

�
   ,        (2) 

 
where G ,and Λ are  gravitational constant and cosmological constant respectively. Both are 
considered as function of time t.  

The energy momentum tensor,  ��
�
 is 

 

��
�

= (� + �)���� + ���
�

+ ��
�
.        (3) 

 

Here  ��
�
 is defined as follows [12, 38], 

 

��
�

= �̅ �|ℎ|� ����
� +

�

�
��

�
� − ℎ�ℎ��,        (4) 

with 

ℎ� = √��

���
������

����          (5) 

The non-vanishing component of electromagnetic field tensor is, ��� = �, where � is constant. 

We assume 
 
� = � − 3��,           (6) 
 
where � is the equilibrium pressure, � is the coefficient of viscosity and � is the energy density, 
together with   ���� = −1. 
 
To get deterministic model, we assume that the magnetic permeability �̅  is a variable quantity 
and assume that�̅  = e���.  
Einstein's field equation (2) for the Bianchi Type-V metric (1) with  equations (3), (4) and (5) 
reduces to, 
 
���

�
+

���

�
+

����

��
−

�

��  = −8�� �� −
��

������ + Λ      (7) 
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���

�
+

���

�
+

����

��
−

�

��
 = −8�� �� +

��

�����
� + Λ      (8) 

���

�
+

���

�
+

����

��
−

�

��
 = −8�� �� +

��

�����
� + Λ      (9) 

����

��
+

����

��
+

����

��
−

�

��
 = 8�� �� +

��

�����
� + Λ      (10) 

���

�
−

��

�
−

��

�
= 0                                                   (11) 

 

In the above field equations, suffix 4 represents differentiation with respect to the time 
variable. 

 The divergence of Einstein tensor ���
�

−
�

�
��

�
�

;�
= 0 , gives one more equation. 

It leads to �8����
�

− Λ��
�
�

;�
= 0, then from equation (3), we get 

8�� �
���

���� + (� + �) �
��

�
+

��

�
+

��

�
� + ��� + 8��� �� +

��

������  + Λ� = 0.                     (12) 

The conservation of energymomentum tensor gives us 

���

���� + (� + �) �
��

�
+

��

�
+

��

�
� + �� = 0.                          (13) 

Now concluding, 

� = ����,           (14) 

where η
�
 is a positive number and s is a constant. 

 
To find the complete solution of the model, wealso  assume the condition 
 
� = �� , (0 ≤ � < 1).                                                                    (15) 
 
3. Solutions of the Field Equations: 

Here we solve the Einstein field equations analytically. These are five nonlinear ordinary 
differential equations in seven unknowns, so we need at least two constraints to solve them 
exactly. We take, 
� = ��           (16) 
Where n is a positive constant. 
Equations (8) and (9) lead to 
���

�
+

����

��
=

���

�
+

����

��
         (17) 

Using  equation (11) in equation (16) we obtain, 
���

�
+

�

�
�

��

�
�

�

=
���

�
+

�

�
�

��

�
�

�

                              (18) 

Using equation (16) in equation (18) we get, 

���

�
=

���
�

�
���

�

�
�

(���)
. �

��

�
�

�
         (19)  

Integrating equation (19) with respect to the time variable we get, 

� = [(1 − �)(��� + ��)]
�

(���)        (20) 
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Here � =
��������

�(���)
, �� and �� are constants of integration. 

Putting the value of C from equation (20) in equation (16) we obtain 

� = [(1 − �)(��� + ��)]
�

(���)        (21) 
and 

� = ��[(1 − �)(��� + ��)]
���

�(���)       ,                                                          (22) 
where �� is a constant of integration. 
Hence the metric (1) leads to the following form 

��� = −��� + ��
�[(1 − �)(��� + ��)]

(���)

(���)��� + ��� �[(1 − �)��� + ��]
��

(���)��� +

[(1 − �)��� + ��]
�

(���)����         (23) 
After using suitable transformation the metric (23) reduces to 

��� = −
1

��
� ��� + [(1 − �)�]

���

(���)��� + ���[(1 − �)�]
��

(���)��� + ���[(1 − �)�]
�

(���)��� 

                                                                                                             (24) 
Where  ��� = �, 
� = �, 
� = �, 
� = �, and 
��� + �� = �. 
4. Some physical parameters  
Now we evaluate some parameters to characterize our model. 
Subtracting equation (7) from (10) we get, 

���

�
+

���

�
−

����

��
−

����

��
+

�

��  = −8��(� + �)      (25) 

Using equations (20),(21),(22) and (15) in the equation (25) we obtain 

8�� =
�(���)

���
�

��
(���)�

�
��

��
�

�
�

�
�

�(����)�

����(���)�
.       (26) 

From equation (13) 

�� +
�(���)(���)

�
.

��

�
. � = −

���

�(����).        (27) 

Using first order linear differential equations techniques we get density of the model is, 

 

� =
�

�� . �
����

�
.

�

��
.

�(���)

(���)
+ ��         (28) 

Where L is a constant of integration with, 

� =
�(���)(���)

�(���)
,          (29) 

� =
(����)(���)

�(���)
,                              (30)  

� = (1 − �)�
�(���)

���
�
.                                (31) 

Equation (15) gives pressure as, 
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� =
�

��
. �

����

�
.

�

��
.

�(���)

(���)
+ ��.        (32) 

Using the equation (20) and equation (28) in equation (26), we obtain 

8�� = −
�(� + 1)��

�� − �
(���)�

�
� ��

� + 8[(1 − �)�]
��(���)

(���)
��

�

�
(���)�(���)

���� . �
����

�
.

�

��
.

�(���)

(���)
+ �� − 3�� �

�

�� . �
����

�
.

�

��
.

�(���)

(���)
+ ���

�

.
(���)

�
. ��[(1 − �)�]�

 

(33) 

From  equation (10),  we obtain 

Λ(�) =

�(� + 1)��
�� − �

(���)�

�
� ��

� + 8[(1 − �)�]
��(���)

(���)
��

� . �
�

�� . �
����

�
.

�

��
.

�(���)

(���)
+ ��  +

��

�[(���)�]
�(���)
(���)

�

�
(���)�(���)

���� . �
����

�
.

�

��
.

�(���)

(���)
+ �� − 3�� �

�

�� . �
����

�
.

�

��
.

�(���)

(���)
+ ���

�

.
(���)

�
. ��[(1 − �)�]�

 

+
�����������

�

�[(���)�]�
−

��

[(���)�]
�(���)
(���)

        (34) 

As we have taken bulk viscosity as 

� = ��. �
�

��
. �

����

�
.

�

��
.

�(���)

(���)
+ ���

�

        (35) 

Also from equation (6), the total pressure is defined as 

� = � − 3��.  
 
So we obtain 

� =
�

��
. �

����

�
.

�

��
.

�(���)

(���)
+ �� − 3. ��. �

�

��
. �

����

�
.

�

��
.

�(���)

(���)
+ ���

�

.
(���)

�
.

��

[(���)�]
. 

                             (36) 
 
Hubble parameter is defined as, 

� =
�

�
�

��

�
+

��

�
+

��

�
�, 

� =
(���)

�
.

��

[(���)�]
.                               (37) 

Volume of the universe is defined as follows, 

� = ��� = ��. [(1 − �)�]
�(���)

�(���).        (38) 
Scale factor turns out to be 

�(�) = ��
�/�. [(1 − �)�]

(���)

�(���).        (39) 
The anisotropy parameter is 

�� =
�(���)�

�(���)�
.           (40) 

The shear scalar is given by  

�� =
(���)�

�
.

��
�

[(���)(������)]�.         (41) 

The expansion scalar is 

� =
�(���)��

[(���)(������)]
.          (42) 
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So, the ratio of the shear scalar, and the expansion scalar is 
�

�
=

(���)

�(���)
.            (43) 

 
 
5. The model in absence of magnetism: 

 

Now we discuss the model in absence of magnetism. 

Substituting K=0 in equation (28), we get 

� =
�

(������)�           (44) 

From equation (32) gives pressure of the model as, 

� =
��

(������)�,           (45) 

equation (33) reduces to, 

8�� = −
�(���)��

����
(���)�

�
���

���[(���)�]
��(���)

(���)
��

�

�
(���)�(���)

���� ������
�

���
�

.
(���)

�
.��[(���)�]�

  .      (46) 

The value of   cosmological constant  Λ is  

Λ(�) =
�(���)��

����
(���)�

�
���

���[(���)�]
��(���)

(���)
��

�

�
(���)�(���)

���� ������
�

���
�
.
(���)

�
.��[(���)�]�

.
�

�� +
�����������

�

�[(���)�]� −
��

[(���)�]
�(���)
(���)

 .                

 

The  bulk viscosity is 

� = ��. �
�

���
�

                                                                                                                             

(47)  

The total pressure is 

� =
��

�� − 3. ��. �
�

�� . �
�

.
(���)

�
.

��

[(���)�]
                                             (48) 

 
6. Graphical Representation 
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                    Fig. 1 The variation of scale factor along with cosmic time 

From equations (39) we have plotted fig. 1, which shows that the variations of scale factors 
with cosmic time T for �� = 1, �� = 1.5, �� = 2 , the scale factor shown with black line 
increases faster  than others whereas green line varies slower than others. 

 

                  Fig. 2 Variation of Hubble parameter along with cosmic time 

From equations (37) we have plotted fig. 2, which shows that the Hubble parameter decreases 
with cosmic time for � = −1.25, �� = 1, �� = 1.5, and  � = 0.5. We also observe the same 
nature for different values of �, shown as overlapping over red line. 

 

 

Fig. 3 Variation ofthe  density with time(2D)            Fig. 4 Variation of density with time (3D) 
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Using equation (28) we have plotted fig. 3, It shows that the density reaches to zero from 
negative value,  shown by red and blue line whereas green and black lines represents 
decreasing density,  at late times to zero for K=2 , �� = 1, �� = 1.5, �� = 2 , � = 1 � = 0.5  (in 
2-D diagram).  Fig. 4 is plotted for different values of K from -5 to 5. It  also gives symmetry 
with center K=0, for � = 1.25, �� = 1, �� = 1.5, �� = 2, � = 2, � = 1 � = 0.5 and � = 0.5. 

 
 

 

Fig. 5 Variation of pressure with time(2D)        Fig. 6 Variation of pressure with time (3D) 

From equations (32) we have plotted fig. 5. Here red and black line overlapped, green line 
shows the  decreasing equilibrium pressure to zero, starting from positive value for K=2 
,�� = 1, �� = 1.5, �� = 2 , � = 1 � = 0.5 (in 2-D diagram). Fig. 6, for different values of K 
from -5 to 5 also gives symmetry nature with center K=0, for � = −1.25, �� = 1, �� =
1.5, �� = 2, � = 2, � = 1 � = 0.5 and � = 0.5. 

 

    Fig. 7 Variation of [G(T)] with time(2D)        Fig. 8 Variation of [G(T)] with time (3D) 

From equations (33) we have plotted fig. 7. It shows that all the lines of the gravitational 
constant [G(t)] reaches to zero in late times for K=2 (in 2-D diagram ) . Fig. 8, for different 
values of K from -5 to 5 shows sometimes upwards to zero and sometime downwards 
movement for different values of K, here� = −1.25, �� = 1, �� = 1.5, �� = 2 , � = 2, � =

1, � = 0.5, � = 4, � =
��

�
, � = 0.4 and � = 0.5. 
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Fig. 9 Variation of Λ(�) with time(2D)                Fig. 10 Variation of Λ(�) with time (3D) 

From equations (34) we have plotted fig. 9. It shows that green and black lines representing the 
cosmological constant Λ(�) reaches positive to zero whereas red and blue lines decreases 
negative to zero in late times for K=2 ( in 2-D diagram).  In fig. 10, we have a symmetry  for 
different values of K from -5 to 5  for � = −1.25,  �� = 1, �� = 1.5, �� = 2 , � = 2, � =

1, � = 0.5, � = 4, � =
��

�
, � = 0.4 and � = 0.5. 

 

 

Fig. 11 Variation of � with time(2D)               Fig. 12 Variation of � with time (3D) 

From equations (35) we have plotted fig. 11. It shows that the bulk viscosity �represented by 
red , blue and black lines reaches positive uptoto zero, whereas green line reaches negative to 
zero but blue line constantly remain zero in late times for K=2 (in 2-D diagram).  In fig. 12, we 
have plotted graphs  for different values of K from -5 to 5 with � = −1.25, �� = 1, �� =

1.5, �� = 2, � = 2, � = 1, � = 0.5, � = 4, � =
��

�
, � = 0.4 and � = 0.5 . 

 

Fig. 13Variation of  pressure with time(2D)     Fig.14Variation of  pressure with time (3D) 

 



35 
 

GANITA SANDESH, Vol. 38 (June & December, 2024) 

 

Using  equations (36) we have plotted fig. 13.Here we see that only the black line shows 
positive nature  of the total pressure �, but red line moves from  positive to negative.The blue 
always remains negative, and green moves from negative to positive in late times for K=2 ( in 
2-D ). From fig. 14,we havegraphs for different values of K ranging -5 to 5. It  also represents 
the same behavior for different values of K, with� = −1.25, �� = 1, �� = 1.5, �� = 2 , � =

2, � = 1, � = 0.5, � = 4, � =
��

�
, � = 0.4 and � = 0.5 . 

 
7. Conclusion 
In this paper we have studied the Bianchi Type V barotropic fluid with magnetic field in 
general relativity. The model (24) starts with a big bang at = 0, and the expression in the model 
decreases,as the time increases. The spatial volume (V) increases, as time (T) increases(for 
� ≠ −1  or  � ≠ 1). The matter density � → ∞ when � → 0, and � → 0 when � → ∞, 
provided � > −1 and � > −1.  
The model (24) has a point type singularity at � = 0  [Mac Callum (39)]. Shear scalar  (�) 

increases as � > �, � < 1. Time (t) decreases and � increases as T increases. Since  
�

�
≠ 0, 

hence anisotropy is maintained throughout. However at � = 1, the model (24) isotropizes. 
Hence the model (24) represents an inflationary scenario.From equation (46) it is evident that 
the gravitational constant G(t) increases with time for (K=0) . When � → ∞ then � → 0, and 
when � → 0 then � → ∞ is consistent with previously obtained  results by Bali et al. [29]. 
It is observed that in presence of the magnetic field, pressure�, energy density � and 
cosmological constant Λ varies from negative to zero at late times. The gravitational constant 
G approaches to zero, when cosmic time tends to infinity. 
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Abstract 
 In this paper, we introduce a new � − � generalised �- series. We find the integral 

representation of "� − � generalised �- series and its properties". The Riemann-Liouville 
fractional order integral and derivative of the function have been derived in the paper. Some 
results previously given by Ali, M.F. et al.(2023), Gehlot et al.(2012), Sharma, M. et 
al.(2012)and Prabhakar, T.R.(1971) follow as particular cases of � − � generalised C series. 
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1  Introduction 
 The main aim of this paper is to introduce "� − � generalised � series and find its 

integral representation. 
Section 2 describes �-series, �- series, �- series, �-series. 
Section3 Introduces new � − � generalised � series and shows its integral 

representation, fractional order integral and derivative of the � − � generalised �- series and 
some basic properties of it. 

 

2  Preliminaries  
 

2.1  Definition 

Fractional Integral Operator: 
The left sided Riemann-Liouville fractional integral of order � which is defined and 

denoted [12, P.4] for ��(�) > 0 is as below 
 

 ���
� =� ��

�� =
�

��
∫  

�

�
(� − �)����(�) ��,   (2.1) 

 here � could be real or fraction or complex. 
Special case for � = 0 
 

 ���
� =� ��

�� =
�

��
∫  

�

�
(� − �)����(�) ��.   (2.2) 
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The right-sided Riemann-Liouville fractional integral of order � is defined and denoted 

[12, P.5] for ��(�) > 0 is as below 
 

 ���
� =� ��

�� =
�

��
∫  

�

�
(� − �)����(�) ��.   (2.3) 

 
Special case for � = ∞ 
 

 ���
� =� ��

�� =
�

��
∫  

�

�
(� − �)����(�) ��.   (2.4) 

 
Fractional Derivative Operator 
The left sided Riemann-Liouville fractional derivative of order � is defined and 

denoted [12, P.52] for ��(�) > 0 is as below 
 

 ���
��(�) =� ��

�
�

��
�(���)

�(�) 

 

 �

�

�(���)
(

�

��
)� ∫  

�

�
(� − �)������(�) ��,    � − 1 < � < �

(
�

��
)����(�),    ��    � = � − 1,

�  (2.5) 

 
here � = [�] + 1 where [�] denotes the integer part of ��(�) not exceeding �. 
Special case for � = 0 
 

 ���
��(�) =� ��

�
�

��
�(���)

�(�) 

 

 �

�

�(���)
(

�

��
)� ∫  

�

�
(� − �)������(�) ��,    � − 1 < � < �

(
�

��
)����(�),    ��    � = � − 1,

�  (2.6) 

 
The Right sided Riemann-Liouville fractional derivative of order � is defined and 

denoted [12, P.63] for ��(�) > 0 is as below  
 

 ���
��(�) = �

(��)�

�(���)
(

�

��
)� ∫  

�

�
(� − �)������(�) ��,    � − 1 < � < �

(
�

��
)����(�),    ��    � = � − 1,

� (2.7) 

 
here � = [�] + 1 where [�] denotes the integer part of ��(�) not exceeding �. 
Special case for � = ∞ 
 

 ���
� �(�) = �

(��)�

�(���)
(

�

��
)� ∫  

�

�
(� − �)������(�) ��,    � − 1 < � < �

(
�

��
)����(�),    ��    � = � − 1,

� (2.8) 

 
Special functions of Fractional Calculus 
In 2009,  M-series defined by Sharma and Jain [12] (see also [11]), as  
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 ���
�,�

(��, ⋯ ��; �� ⋯ ��; �) = ∑  �
���

(��)�⋯(��)�

(��)�⋯(��)�

��

�(����)
=� ��

�,�
(�), (2.9) 

 
where �, �, � ∈ ℂ, ��(�) > 0��, �� ≠ 0, −1, −2 ⋯ (� = 1,2, ⋯ �; � = 1,2, ⋯ �), (��)� 

and (��)� are known Pochhammer symbols. 

� series is absolutely convergent for all � if � ≤ �, it is convergent if � = � + 1 and 
divergent if � > � + 1. 

In 2012, the K- series defined by Gehlot et al [3], as 
 

 ���
(�,�)�(��, ⋯ ��: ��, ⋯ ��, (�, �)�; �) =� ��

(�,�)�(�) =

∑  �
���

∏  
�
��� (��)�

∏  
�
��� (��)�

��

∏  �
��� �(������)

,  

       (2.10) 
 

where ��, ��, �� ∈ ℂ ; �� ∈ ℝ, (� = 1,2 ⋯ �; � = 1,2 ⋯ �; � = 1,2 ⋯ �). 

The series (2.10) is defined when none of the parameter ��(� = 1,2 ⋯ �) is negative 
integer or zero. If any numerator parameter ��(� = 1,2 ⋯ �) is negative integer or zero, the 

series terminates into polynomial in �. 
The convergence/ divergence of the series is subject to the following conditions: 
(i) if � < � + ∑  �

��� ��, then the series is absolutely convergent for all � ∈ ℂ.  
(ii) if � = � + ∑  �

��� ��, then the series is absolutely convergent  

if |�| < ∏  �
��� (|��|)

��, and if |�| = ∏  �
��� (|��|)

��  then ��(∑  
�
��� (��) + ∑  �

��� (��) −

∑  
�
��� (��)) >

�������

�
. 

In 2016, the R- series defined by M.F. Ali et. al [1], as  

 ���
�,�

(��, ⋯ ��; ��, ⋯ ��; �) =� ��
�,�

(�) = ∑  �
���

(��)�⋯(��)�

(��)�⋯(��)�

��

�(����)�!
, (2.11) 

 
here, � upper parameters ��, �� ⋯ �� and � lower parameters ��, ��, ⋯ ��, � ∈ ℂ, 

��(�) > 0, � > 0 and (��)�, (��)� are pochhammer symbols. 

In 2023, the C-series was introduced and defined by Mohd.Farman Ali et al.[2]. The �-
series is defined as: 

�,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��, (�, �)�; �) =�,� ��,�
(�,�)�(�) 

=     �  

�

���

(��)�� ⋯ (��)��

(��)�� ⋯ (��)��

��

∏  �
��� Γ(��� + ��)

, 

 

 �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��, (��, ��), ⋯ (��, ��); �) =

∑  �
���

∏  
�
��� (��)��

∏  
�
���

(��)��

��

∏  �
��� �(������)

,       (2.12) 

 
here, ��, �� ∈ ℂ, ��(��) > 0, ��(��) > 0, (��)��, (��)�� are pochhammer symbols. 

The series (2.12) is defined when none of the parameter ��(� = 1,2 ⋯ �) is negative 

integer or zero. If any numerator parameter ��(� = 1,2 ⋯ �) is negative integer or zero, the 
series terminates into polynomial in �. 
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By applying ratio test, the series is 
(i) convergent for all �, when � ≤ � + ∑  �

��� ��, 
(ii) convergent for |�| = 1 when | ∏  �

��� Γ(��)��| > 1. 
 

2.2  p-k generalised C-series 

 
The authors have introduced and defined the � − � generalised C-series as  

 �
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��); �)�
�

�

=�
�

� �,���,�
(�,�)�

(�)�
�

�

 

 

 = ∑  �
���

��(��)��,��⋯��(��)��,��

��(��)��,��⋯��(��)��,��

��

∏  �
��� �(������)

, 

 

 �
�

� �,���,�
(�,�)�

(�)�
�

�
= ∑  �

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

��

∏  �
��� �(������)

,  (2.13) 

 where ��, ��, ��, ��, �� ∈ ℝ� − (0), �, ��, ��, �� ∈ ℂ, (� = 1,2 ⋯ �; � = 1,2 ⋯ �; � = 1,2 ⋯ �), 

��(��) > 0, ��(��) > 0, �, � are non negative integers.  

The series (2.13) is not defined when either of the parameters �� or ��(� = 1,2 ⋯ �) is 

negative integer or zero. The series terminates into polynomial in � if any parameter of either 
�� or ��, (� = 1,2 ⋯ �) is negative integer or zero. 

Convergence criteria of � − � generalised �-series when applying ratio test is  

(i) if �� + ∑  �
��� �� > �� , then the series is absolutely convergent for all values of 

� ∈ ℂ, 

(ii)if �� + ∑  �
��� �� = ��, then the series is absolutely convergent for all values of 

|�| <
(��⋯��)�

(��⋯��)� ������� ∏  �
��� (��)��, 

(iii)if �� + ∑  �
��� �� = �� and |�| = |

(��⋯��)�

(��⋯��)� ������� ∏  �
��� (��)��|,then series is 

absolutely convergent when ∑  
�
���

��

��
+ ∑  �

��� �� − ∑  �
���

��

��
>

�������

�
. 

Particular Cases of p-k generalised C-series When some particular values given to 
parameters of equation (2.13) 

(i) Putting � = � = � = � = 1 and � = 1 = � in the equation (2.13), the equation 
reduces to the �-series defined by Kuldeep Singh Gehlot [3],  

 �
� � �,���,�

(�,�)�
(�)�

�

�
= ∑  �

���
∏  �

��� (��)�

∏  
�
���

(��)�

��

∏  �
��� �(������)

=� ��
(�,�)�(�). (2.14) 

 
(ii) Putting � = � = � = � = 1, � = 1 = � and � = 1 in the equation (2.13), it reduces 

to �-series introduced by Sharma [12],  

 �
� � �,���,�

(�,�)�
(�)�

�

�

= ∑  �
���

∏  �
��� (��)�

∏  
�
���

(��)�

��

�(����)
=� ��

(�,�)
(�). (2.15) 

 
(iii) Putting � = � = � = � = 1, � = 1 = �, � = 2 and �� = 1, �� = �, �� = 1, �� = � 

in the equation (2.13), the equation reduces to the �-series defined by M.F.Ali et.al [1],  

 �
� � �,���,�

(�,�)�
(�)�

�

�

= ∑  �
���

∏  �
��� (��)�

∏  
�
���

(��)�

��

�(����)�(���)
=� ��

(�,�)
(�). (2.16) 
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(iv) Putting � = � = � = � = 1 in the equation (2.13), the equation reduces to the � 
series defined by Mohd.Farman Ali et al.[2],  

 �
� � �,���,�

(�,�)�
(�)�

�

�

= ∑  �
���

∏  �
��� (��)��

∏  
�
���

(��)��

��

∏  �
��� �(������)

=�,� ��,�
(�,�)�(�). (2.17) 

 
(v) Putting � = � = � = � = 1, � = 1 = �, � = 2, �� = 1, �� = �, �� = 1, �� = �, 

� = 1 and � = 0 i.e no lower parameter � in the equation (2.13), the equation reduces to the 
generalised Mittag-Leffler function introduced by Prabhakar [9] in (1971),  

 �
� � �,���,�

(�,�)�
(�)�

�

�

= ∑  �
���

(�)���

�(����)�(���)
= ��,�

� (�).  (2.18) 

 
(vi) If there is no upper and lower parameter i.e � = 0 = �, � = 1 = �, � = � = � =

� = 1 and � = 1 in the equation (2.13), the equation reduces to Mittag-Leffler function by 
Wiman [13] in 1905,  

 �
� � �,���,�

(�,�)�
(�)�

�

�

= ∑  �
���

��

�(������)
= ���,��

(�).  (2.19) 

 
(vii) Putting � = 0 = �, � = 1 = �, � = 1, �� = �, �� = 1 and � = � = � = � = 1 in in 

the equation (2.13), the equation reduces to Mittag-Leffler function defined by Gosta Mittag-
Leffler [8] in 1903, 

 

 �
�� �,���,�

(�,�)�
(�)�

�

�
= ∑  �

���
��

�(����)
= ��(�).  (2.20) 

 
(viii) Putting � = � = � = � = 1, � = 1 = �, � = 1, �� = 1, �� = 1 in the equation 

(2.13), the equation reduces to generalised hypergeometric function [7],  

 �
�� �,���,�

(�,�)�
(�)�

�

�
= ∑  �

���
∏  �

��� (��)�

∏  
�
���

(��)�

��

�(���)
=� ��(��, �� ⋯ ��; ��, �� ⋯ ��; �).

       (2.21) 
 

(ix) Putting � = � = � = � = 1, � = 1 = �, � = 1, �� = 1, �� = 1 and no upper and 
lower parameter i.e � = 0 = � in the equation (2.13), the equation reduces to an exponential 
function,  

 �
�� �,���,�

(�,�)�
(�)�

�

�
= ∑  �

���
��

�(���)
= ��.   (2.22) 

 
(x) Putting � = � = � = � = 1, � = 1, �� = 1, �� = 1 in the equation (2.13), the 

equation reduces to the general Wright function [7],  

 �
�� �,���,�

(�,�)�
(�)�

�

�

= ∑  �
���

∏  �
��� (��)��

∏  
�
���

(��)��

��

�(���)
= ���� �

(��, �) ⋯ (��, �);
(��, �) ⋯ (��, �)

; |��,

       (2.23) 
 

where � =
∏  

�
��� ���

∏  �
��� ���

. 
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2.3  Integral Representation of uniform convergent p-k generalised C-series 

Theorem 1. For � = �,� = �,� = �; ��, ��, ��, �� > 0, (� = 1,2 ⋯ �; � = 1,2 ⋯ �), 
��

��
>

��

��
, then 

�
�

� �,���,�
(�,�)�(�)�

�

�
= 

∑  �
��� ∏  �

���
�

���
��
��

�,�
��
��

�
��
��

��
∫  

�

�
�

�
��
��

���
(1 −   �)

(
��
��

�
��
��

)��

  �

�

� �,���,�
(�,�)�

(���)�
�

�
 ��.      (2.24)  

  
Proof: Substituting � = �,� = �,� = � in the equation (2.13), we have 
 

 �
�

� �,���,�
(�,�)�

(�)�
�

�

= ∑  �
���

∏  �
��� ��

(��)��,��

∏  �
��� ��

(��)��,��

��

∏  �
��� �(������)

. 

 
Using equation (2.19), (2.20) and (2.22) of [4] in the RHS of above equation, we get 
 

 = ∑  �
��� ∏  �

���

��
���(

��
��

)�(
��
��

���)

��
���(

��
��

���)�(
��
��

)

��

∏  �
��� �(������)

 

 
 

 = ∑  �
��� ∏  �

���

�(
��
��

)

�(
��
��

)�(
��
��

�
��
��

)

�(
��
��

���)�(
��
��

�
��
��

)

�(
��
��

���)

��

∏  �
��� �(������)

 

 
We know the first Eulerian integral is 
 

 �(�, �) = ∫  
�

�
�(���)(1 − �)(���) �� =

����

�(���)
 

 

= �  

�

���

�  

�

���

Γ(
��

��
)

Γ(
��

��
)Γ(

��

��
−

��

��
)

��

∏  �
��� Γ(��� + ��)

�  
�

�

�
(

��
��

�����)
(1 − �)

(
��
��

�
��
��

)��
 �� 

 

= �  

�

���

�  

�

���

1

�((
��

��
), (

��

��
−

��

��
))

�  
�

�

�
(

��
��

��)
(1 − �)

(
��
��

�
��
��

)�� (���)�

∏  �
��� Γ(��� + ��)

 �� 

 

= �  

�

���

�  

�

���

1

�((
��

��
), (

��

��
−

��

��
))

�  
�

�

�
(

��
��

��)
(1 − �)

(
��
��

�
��
��

)��

�

�

� �,���,�
(�,�)�

(���)�
�

�
 ��. 

 
Hence proved. 

Corollary 1.1 For � = �,� = �,� = � ; ��, ��, ��, �� > 0, (� = 1,2 ⋯ �), 
��

��
>

��

��
, then 
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 �
�

� �,���,�
(�,�)�(�)�

�

�

= 

�(
��
��

)

�(
��
��

)�(
��
��

�
��
��

)
∫  

�

�
�

(
��
��

��)
(1 − �)

(
��
��

�
��
��

)��

���

���

� ���,�����,�
(�,�)�

(���)�
���

���
 ��. (2.25) 

 
Proof: Substituting � = �,� = �,� = � in the equation (2.13), we have 

 �
�

� �,���,�
(�,�)�

(�)�
�

�

= ∑  �
��� ∏  �

���
��

(��)��,��

��
(��)��,��

��

∏  �
��� �(������)

 (2.26) 

 
Taking RHS of the equation(2.26), we have  

 = ∑  �
��� ∏  �

���
��

(��)��,��

��
(��)��,��

��(��)��,��

��(��)��,��

��

∏  �
��� �(������)

 

 
By using equation (2.19),(2.20) and (2.22) of [4], we have 
 

 = ∑  �
��� ∏  �

���
��

(��)��,��

��
(��)��,��

��
��(

��
��

)��

��
��(

��
��

)��

��

∏  �
��� �(������)

 

 
 

 = ∑  �
��� ∏  �

���
��

(��)��,��

��
(��)��,��

�(
��
��

���)

�(
��
��

)

�(
��
��

)

�(
��
��

���)

�(
��
��

�
��
��

)

�(
��
��

�
��
��

)

��

∏  �
��� �(������)

 

 
By using definition of Beta function 

= �  

�

���

�  

�

���

��
(��)��,��

��
(��)��,��

Γ(
��

��
)

Γ
��

��
Γ(

��

��
−

��

��
)

��

∏  �
��� Γ(��� + ��)

�  
�

�

�
(

��
��

�����)
(1 − �)

(
��
��

�
��
��

)��
 �� 

 

=
Γ(

��

��
)

Γ
��

��
Γ(

��

��
−

��

��
)

�  
�

�

�
(

��
��

��)
(1 − �)

(
��
��

�
��
��

)��
 �� �  

�

���

�  

�

���

��
(��)��,��

��
(��)��,��

(���)�

∏  �
��� Γ(��� + ��)

 

 

=
Γ(

��

��
)

Γ(
��

��
)Γ(

��

��
−

��

��
)

�  
�

�

�
(

��
��

��)
(1 − �)

(
��
��

�
��
��

)��

���

���

� ���,�����,�
(�,�)�

(���)�
���

���

 ��. 

 
Hence proved. 
Theorem 2. For �� ∈ ℝ; �� ∈ ℂ; (��) > 0 ,��(��) > 0 for � = 1 ⋯ �, �, � ∈ ℝ, 

(� − �) > 0, � ∈ ℂ, ��(�) > 0, g I  then we have 
 

 �
�

� �,���,�
(�,�)�

(�)�
�

�

=

����� ∫  
�

�
��

��

�� ������
�
�

� �,���,�
(�,�)���

(��, ⋯ ��; �� ⋯ ��; (�, �)�, (
�

�
,

���

�
); �)�

�

�

 ��. (2.27) 
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Proof: Taking RHS of the equation (2.27), we have  

= ����� �  
�

�

��
��

�� ������
�
�

� �,���,�
(�,�)���

(��, ⋯ ��; �� ⋯ ��; (�, �)�, (
1

�
,
� − �

�
); �)�

�

�

 ��. 

Using the equation (2.13), we get  

= ����� �  
�

�

��
��

�� ������ �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

��

∏  �
��� Γ(��� + ��)

��

Γ(
�

�
+

���

�
)
. 

Order of integration and summation can be interchanged under the conditions of uniform/ 
absolute convergence of the series as discussed in the subsection (2.2). 

 

= ����� �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

1

Γ(
�

�
+

���

�
)

1

∏  �
��� Γ(��� + ��)

�  
�

�

��
��

�� �������� �� 

 

Let 
��

�� = � ; � = ��
�

�; �� =
�

�
�

�

�
��

�� 

= ���� �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

1

Γ(
�

�
+

���

�
)

������

∏  �
��� Γ(��� + ��)

�  
�

�

����
�����

�
��

 �� 

 
Using gamma function definition 
 

 = ���� ∑  �
���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

������

∏  �
��� �(������)

 

 

 =�
�

� �,���,�
(�,�)�

(�)�
�

�
. 

Hence proved. 
Corollary 2.1 Putting � = � = � = � = 1 in the equation (2.27), we get the integral 

representation of C-series defined by Mohd. Farman Ali et al. [2]. 
 

 �
� � �,���,�

(�,�)�(�)�
�

�

= 

����� �  
�

�

��
��

�� ������
�
�

� �,���,�
(�,�)���

(��, ⋯ ��; �� ⋯ ��; (�, �)�, (
1

�
,
� − �

�
); �)�

�

�

 �� 

 

 = � �,���,�
(�,�)�

(�)�    (2.28) 

 
Corollary 2.2 Putting � = � = � = � = 1; � = 1 = � in the equation (2.27), we get 

the integral representation of K-series defined by Kuldeep Sigh Gehlot et. al[3] 
 

 �
� � �,���,�

(�,�)�(�)�
�

�
= 

����� �  
�

�

��
��

�� ������
�
�

� �,���,�
(�,�)���

(��, ⋯ ��; �� ⋯ ��; (�, �)�, (
1

�
,
� − �

�
); �)�

�

�

 �� 
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 =� ��
(�,�)�(�).     (2.29) 

 
Corollary 2.3 Putting � = � = � = � = 1; � = 1 = �� = 1 in the equation(2.27), we 

get the integral representation of M-series  
 

 �
� � �,���,�

(�,�)�(�)�
�

�

= 

����� �  
�

�

��
��

�� ������
�
�

� �,���,�
(�,�)�

(��, ⋯ ��; �� ⋯ ��; (�, �)�, (
1

�
,
� − �

�
); �)�

�

�

 �� 

 

 =� ��
(�,�)�(�).     (2.30) 

Corollary 2.4 Putting � = � = � = � = 1; � = 1 = �, � = 1, �� = 1, �� = 1 in the equation 
(2.27), we get integral representation of ���(�) 

 

 �
�� �,���,�

(�,�)(�)�
�

�

= 

����� �  
�

�

��
��

�� ������
�
�

� �,���,�
(�,�)�

(��, ⋯ ��; �� ⋯ ��; (1,1), (
1

�
,
� − �

�
); �)�

�

�

 �� 

 
 =� ��(�).     (2.31) 

 
Corollary 2.5 Putting � = � = � = � = 1; � = 1, � = � + 1, ���� = ���� = 1, � = 1, 

�� = � and no lower parameter q in the eqation (2.27), we get integral representation of 
generalised Mittag Leffler function studied by Saxena R.K. et al.[10] 

 

 �
� � �,���,�

(�,�)���(�)�
�

�

= 

����� �  
�

�

��
��

�� ������
�
�

� �,���,�
(�,�)���

(�; −; (�, �)�, (1,1), (
1

�
,
� − �

�
); �)�

�

�

 �� 

 = ��,�[(��, ��) ⋯ (��, ��): �] = ��,�[(��, ��)�,�: �]  (2.32) 
 

Corollary 2.6 Putting � = � = � = � = 1; � = 1 = �, � = 1 and there are no upper 
and lower parameter in the equation (2.27), we get the integral representation of generalised 
Mittag Leffler function ��,�(�) 

�
� � �,���,�

(�,�)�
(�)�

�

�

= ����� �  
�

�

��
��

�� ������
�
�

� �,���,�
(�,�)�

(−; −, (�, �)(
1

�
,
� − �

�
); �)�

�

�

 �� 

 
 = ��,�(�).     (2.33) 

 
Theorem 3. For � ∈ ℂ, �, �, � ∈ ℝ, and � > 0, � > 0, � > 0, � + � > �, then we have 

 �
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (�, � + �), (��, ��) ⋯ (��, ��); �)�
�

�
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=
1

�Γ(� + � − �)
�  

�

�

 

(1 − �
�

�)�������
�

�
� �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ��)�

�

�

 ��.

       (2.34) 
 

Proof: Taking RHS of the equation (2.34), we have 

=
1

�Γ(� + � − �)
�  

�

�

 

(1 − �
�

�)�������
�

�
� �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ��)�

�

�

 �� 

. 
Using the equation (2.13), we have  

=
1

�Γ(� + � − �)
�  

�

�

(1

− �
�

�)������� �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

(��)�

∏  �
��� Γ(��� + ��)Γ(�� + �)

 �� 

 
Order of integration and summation can be interchanged under the conditions of 
uniform/absolute convergence of the series as discussed in the subsection (2.2).  

=
1

�Γ(� + � − �)
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

��

∏  �
��� Γ(��� + ��)Γ(�� + �)

�  
�

�

 

                                                                                                                              (1 − �
�

�)��������� �� 
 

Let �
�

� = �; � = ��; �� = ����� 

=
�

�(�����)
∑  �

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

��

∏  �
��� �(������)�(����)

∫  
�

�
(1 − �)�������������� �� 

 
Using definition of Beta function, we have 
 

 = ∑  �
���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

��

∏  �
��� �(������)�(���(���))

 

 

 =�
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (�, � + �), (��, ��) ⋯ (��, ��); �)�
�

�

. 

 
Hence proved. 
Corollary 3.1 Putting � = � = � = � = 1 in the equation (2.34), we get the integral 

representation of C-series studied by Mohd. Farman Ali et. al[2] 
 

 �
� � �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (�, � + �), (��, ��) ⋯ (��, ��); �)�

�

�

 

=
1

�Γ(� + � − �)
�  

�
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(1 − �
�

�)�������
�

�
� �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ��)�

�

�

 ��.

       (2.35) 
 

Corollary 3.2 Putting � = � = � = � = 1 and � = 1 = � in the equation (2.34), we 
get the integral representation of K-series studied by Kuldeep Singh Gehlot et al.[3,P.393] 

 

 �
� � �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (�, � + �), (��, ��) ⋯ (��, ��); �)�

�

�
 

=
1

�Γ(� + � − �)
�  

�

�

 

(1 − �
�

�)�������
�

�
� �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ��)�

�

�

 �� 

 

 =� ��
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (�, � + �), (��, ��) ⋯ (��, ��); �). (2.36) 

Theorem 4. For �, �, � ∈ ℝ and � > 0, � > 0, then we have 

 �
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��);
�

��)�
�

�

 

=

�� ∫  
�

�
��������

�
�

� �,���,�
(�,�)���

(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ���)�
�

�
 ��.  

       (2.37) 
Proof: Taking RHS of the equation (2.37), we have 

=  �� �  
�

�

��������
�
�

� �,���,�
(�,�)���

(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ���)�
�

�

 �� 

 
Using the equation (2.13), we have 

= �� �  
�

�

�������� �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

(���)�

∏  �
��� Γ(��� + ��)Γ(�� + �)

 �� 

Order of integration and summation can be interchanged under the conditions of 
uniform/absolute convergence of the series as discussed in the subsection (2.2).  

= �� �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

(�)�

∏  �
��� Γ(��� + ��)Γ(�� + �)

�  
�

�

����������� �� 

 
Using definition of Gamma function  

= �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

1

∏  �
��� Γ(��� + ��)

(
�

��
)� 

 

 =�
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��);
�

��)�
�

�

 

 
Hence Proved. 
Corollary 4.1: Putting  � = � = � = � = 1 in the equation (2.37), we get the integral 

representation of C-series studied by Mohd. Farman Ali et. al[2] 
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 �
� � �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��);

�

��
)�

�

�
 

 =

�� ∫  
�

�
��������

�
� � �,���,�

(�,�)���
(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ���)�

�

�
 ��.  

       (2.38) 
 

Corollary 4.2: Putting � = � = � = � = 1, � = 1 = � in the equation (2.37), we get 
the integral representation of K-series studied and introduced by Kuldeep Singh Gehlot et. al 
[3]  

 �
� � �,���,�

(�,�)�
(��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��);

�

��
)�

�

�

 

= �� �  
�

�

��������
�
�

� �,���,�
(�,�)���

(��, ⋯ ��; ��, ⋯ ��; (�, �), (��, ��) ⋯ (��, ��); ���)�
�

�

 �� 

 

 =� ��
(�,�)�

[��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��);
�

��].  (2.39) 

 
Corollary 4.3: Putting � = � = � = � = 1; � = 1, � = � + 1, ���� = ���� = 1, � = 1, 

�� = � and no lower parameter q in the eqation (2.37), we get the integral representation of 
generalised Mittag Leffler function defined by Saxena R.K. et al.[10] 

 

 �
� � �,���,�

(�,�)���
(�; −; (��, ��) ⋯ (��, ��)(1,1);

�

��
)�

�

�
 

 

= �� �  
�

�

��������
�
�

� �,���,�
(�,�)���

(�; −; (�, �), (��, ��) ⋯ (��, ��)(1,1); ���)�
�

�

 �� 

 

 = ��,�[(��, ��) ⋯ (��, ��);
�

��
].    (2.40) 

 
 

2.4  k-integral Laplace transform of uniform convergent p-k generalised C-series 

Theorem:5. For � > 0; � ≥ 1, �, � ∈ ℂ, then  

 �� � �
�

� �,���,�
(�,�)���

(��, ⋯ ��; ��, ⋯ ��; (�,
�

�
)(��, ��) ⋯ (��, ��); (����)�

�

�

; �� 

 

 =
�

�
�

��

� �

�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��); (
�

�
�
�

)�
�

�

. (2.41) 

 
To avoid confusion between parameter � of � − � generalised �-series and �-integral 

Laplace transform [5], � is used in place of � in �-integral Laplace transform. 
Proof: Taking LHS of (2.41) and using definition of �- integral Laplace transform, we 

get 

= �  
�

�

���
�
���

�
� � �,���,�

(�,�)���
(��, ⋯ ��; ��, ⋯ ��; (�,

1

�
)(��, ��) ⋯ (��, ��); (����)�

�

�

 �� 

 
Using equation (2.13), we get  
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= �  
�

�

���
�
���

�  

�

���

��
(��)��,��

⋯��
(��)��,��

��
(��)��,��

⋯��
(��)��,��

(����)�

∏  �
��� Γ(��� + ��)

 ��

Γ(�� +
�

�
)
, 

 
Order of integration and summation can be interchanged under the conditions of 

uniform convergence of the series as discussed in the subsection (2.2).  

= �  

�

���

��
(��)��,��

⋯��
(��)��,��

��
(��)��,��

⋯��
(��)��,��

��

∏  �
��� Γ(��� + ��)

1

Γ(�� +
�

�
)

�  
�

�

���
�
���

���� ��, 

Let �� = �  i.e � = �
�

�  and �� =
�

�
�

�

�
��

�� 

= �  

�

���

��
(��)��,��

⋯��
(��)��,��

��
(��)��,��

⋯��
(��)��,��

��

∏  �
��� Γ(��� + ��)

1

Γ(�� +
�

�
)

�  
�

�

1

�
���

�
���

���
�

�
��

 ��, 

Using definition of Euler’s second equation, we get  

=
�

�
�

��

�
�  

�

���

��
(��)��,��

⋯��
(��)��,��

��
(��)��,��

⋯��
(��)��,��

��

∏  �
��� Γ(��� + ��)

1

�
��

�

, 

 
 

 =
�

�
�

��

� �

�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, ��) ⋯ (��, ��); (
�

�
�
�

)�
�

�

. 

 
Hence proved. 
 
 

2.5  Fractional order Integral and Differentiation of uniform convergent p-k generalised C-

series 

Theorem:6. Let � > 0, ��(��) > 0, �� > 0, ∀� = 1,2 ⋯ �. The special case (i.e � = 0) 
of left-sided Riemann-Liouville fractional integral given by equation (2.2), then  

 ���
�

[�����
�
�

� �,���,�
(�,�)�

(����)�
�

�

= �������
�
�

� �,���,�
(�,�)�

(����)�
�

�

. (2.42) 

 
Proof: Using equations (2.2) and (2.13) in the LHS of the equation (2.42), we get  

=
1

Γ�
�  

�

�

�����

(� − �)���
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

(����)�

∏  �
��� Γ(��� + ��)

 �� 

Order of integration and summation can be interchanged under the conditions of 
uniform/absolute convergence of the series as discussed in the subsection (2.2).  

=
1

Γ�
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

1

∏  �
��� Γ(��� + ��)

�  
�

�

�����������(� − �)��� �� 

 
Let � = �� and �� = ��� 
 
 



51 
 

Dr. Kuldeep Singh Gehlot & Arun Devra / p-k Generalised C-Series … 

 

=
1

Γ�
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

�������������

∏  �
��� Γ(��� + ��)

�  
�

�

���������(1 − �)��� �� 

 
Using Beta function, we get  

=
�������

Γ�
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

������

∏  �
��� Γ(��� + ��)

Γ(�� + ���)Γ�

Γ(�� + � + ���)
 

 

= �������
�
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, �� + �)(��, ��) ⋯ (��, ��); ����)�
�

�
 

 

 = �������
�
�

� �,���,�
(�,�)�

(����)�
�

�
. 

 
Hence proved. 
Theorem 7. Let � > 0, ��(��) > 0, �� > 0, ∀ � = 1,2 ⋯ �. The special case (i.e. � = ∞) 

of right-sided Riemann-Liouville fractional integral given by equation (2.4), then  

 ���
�

[������
�
�

� �,���,�
(�,�)�

(�����)�
�

�
= ����

�
�

� �,���,�
(�,�)�

(�����)�
�

�
. (2.43) 

 
Proof: Using equations (2.4) and (2.13) in the LHS of the equation (2.43), we get  

=
1

Γ�
�  

�

�

������

(� − �)���
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

(�����)�

∏  �
��� Γ(��� + ��)

 �� 

Order of integration and summation can be interchanged under the conditions of 
uniform/absolute convergence of the series as discussed in the subsection (2.2).  
 

=
1

Γ�
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

1

∏  �
��� Γ(��� + ��)

�  
�

�

������������(� − �)��� �� 

 

Let � =
�

�
 and �� = −

�

�� �� 

=
1

Γ�
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

����������

∏  �
��� Γ(��� + ��)

�  
�

�

���������(1 − �)��� �� 

 
Using Beta function, we get  

=
1

Γ�
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

����������

∏  �
��� Γ(��� + ��)

Γ(�� + ���)Γ(�)

Γ(� + �� + ���)
 

 

= ���� �  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

�������

∏  �
��� Γ(��� + ��)Γ(� + ��) + ���)

 

 

 = ����
�
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, �� + �)(��, ��) ⋯ (��, ��); �����)�
�

�
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 = ����
�
�

� �,���,�
(�,�)�

(�����)�
�

�

. 

 
Hence proved. 
Theorem 8. Let � > 0, ��(��) > 0, �� > 0, ∀� = 1,2 ⋯ �. The special case (i.e. � = 0) 

of left-sided Riemann-Liouville fractional derivative given by equation (2.6), then  

 ���
�

[�����
�
�

� �,���,�
(�,�)�

(����)�
�

�

= �������
�
�

� �,���,�
(�,�)�

(����)�
�

�

.

       (2.44) 
 

Proof: Using equations (2.6) and (2.13) in the LHS of the equation (2.44),we get 

=
1

Γ(� − �)
(

�

��
)� �  

�

�

�����

(� − �)�����
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

(����)�

∏  �
��� Γ(��� + ��)

 ��, 

 
where � = [�] + 1 
Order of integration and summation can be interchanged under the conditions of 

uniform/absolute convergence of the series as discussed in the subsection (2.2).  

=
1

Γ(� − �)
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

1

∏  �
��� Γ(��� + ��)

(
�

��
)� �  

�

�

�����������(�

− �)����� �� 
 

Let � = �� and �� = ��� 

=
1

Γ(� − �)
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

��

∏  �
��� Γ(��� + ��)

(
�

��
)�������������� �  

�

�

��������� 

                                                                                                                                        (1 − �)����� �� 
 

Using Beta function we get  

 =
�

�(���)
∑  �

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

�������������

∏  �
��� �(������)

�(����������)

�(��������)

�(������)�(���)

�(����������)
 

 
 

 = ������� ∑  �
���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

������

∏  �
��� �(������)�(����(����))

 

 

= �������
�
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, �� − �)(��, ��) ⋯ (��, ��); ����)�
�

�
 

 

 = �������
�
�

� �,���,�
(�,�)�

(����)�
�

�

. 

Hence proved. 
Theorem 9. Let � > 0, ��(��) > 0, �� > 0, ∀ � = 1,2 ⋯ �. The special case (i.e. � = ∞) 

of right-sided Riemann-Liouville fractional derivative given by equation (2.8), then  

 ���
�

[�����
�
�

� �,���,�
(�,�)�

(�����)�
�

�

= ����
�
�

� �,���,�
(�,�)�

(�����)�
�

�

.

       (2.45) 
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Proof: Using equations (2.8) and (2.13) in the LHS of the equation (2.45),we get 

=
1

Γ(� − �)
(−

�

��
)� �  

�

�

�����

(� − �)�����
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

(�����)�

∏  �
��� Γ(��� + ��)

 ��, 

 
where � = [�] + 1 
Order of integration and summation can be interchanged under the conditions of 

uniform/absolute convergence of the series as discussed in the subsection (2.2).  

=
1

Γ(� − �)
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

1

∏  �
��� Γ(��� + ��)

(−
�

��
)� �  

�

�

����������� 

                                                                                                                                    (� − �)����� �� 
 

Let � =
�

�
 and �� = −

�

��
�� 

=
1

Γ(� − �)
�  

�

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

��(−
�

��
)����������

∏  �
��� Γ(��� + ��)

�  
�

�

�����������(1 − �)����� �� 

 
Using Beta function, we get  

 =
�

�(���)
∑  �

���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

����������

∏  �
��� �(������)

�(������)

�(��������)

�(��������)�(���)

�(��������)
 

 
 

 = ���� ∑  �
���

∏  �
��� ��

(��)��,��

∏  
�
��� ��

(��)��,��

�������

∏  �
��� �(������)

�

�(��������)
 

 

 = ����
�
�

� �,���,�
(�,�)�

(��, ⋯ ��; ��, ⋯ ��; (��, �� − �)(��, ��) ⋯ (��, ��); �����)�
�

�

 

 

 = ����
�
�

� �,���,�
(�,�)�

(�����)�
�

�

. 

Hence proved. 
 

2.6  A differential equation  

Theorem:10 The � − � generalised �-series for � = � = 1 and �� = 1 where 
� = 1,2 ⋯ � satisfies the differential equation  

 �∏  
�
��� (� +

��

��
− 1) ∏  �

��� (� + �� − 1) − �� ∏  �
��� (� +

��

��
)� � = 0, (2.46) 

 where � = �
�

��
,  � =

∏  �
��� ��

∏  
�
���

��
  and � = ∑  �

���

∏  �
��� ��

(��)�,��

∏  
�
��� ��

(��)�,��

��

∏  �
��� �(����)

, 

for � > � and no 
��

��
 is negative or zero. 

Proof: Using the equation(2.13) and the equation (2.20) of [4], we get the desired 
result. 

Hence proved. 
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3  Conclusion 
We have introduced and studied a “p-k generalised C-series”. The function/series is a 

generalisation of K-series, M-series, R-series and C-series. This series satisfies a differential 
equation (2.46), which shows that the series is useful in solution of any real word problem, 
which is expressed in the form of differential equation (2.46). Further, we obtained k-
Integral Laplace transform of the series to connect the series with integral transform to make 
it relevant for future usage in the field of various research of science and engineering. This 
piece of research also shows relevance of “p-k generalised C-series” by way of finding 
fractional order integration and differentiationof the series. As it is well known the 
importance of the fractional calculus in the field of science and engineering. 
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